
FINAL REPORT

NASA CONTRACT NO. NAS5-30171

//v-'7 "-/--c//._

P4/S
ADVANCED IMAGING SYSTEM

SUBMITTED 31 DECEMBER 1992

ADVANCED TECHNOLOGIES DIVISION

PHOTOMETRICS LTD.

TUCSON, ARIZONA

(NASA-CR-191800) ADVANCED IMAGING

SYSTEM Final Report (Advanced

Technologies) 415 p

N93-16712

Unclas

0140697

SBIR RIGHTS NOTICE

This SBIR data is furnished with SBIR rights under NASA Contract

No. NAS5-30171. For a period of 2 years after acceptance of all items

to be delivered under this contract the Government agrees to use this

data for Government purposes only, and it shall not be disclosed

outside the Government (including disclosure for procurement

purposes) during such period without permission of the Contractor,

except that, subject to the foregoing use and disclosure prohibitions,

such data may be disclosed for use by support contractors. After the

aforesaid 2-year period the Government has a royalty-free license to
use, and to authorize others to use on its behalf, this data for

Government purposes, but is relieved of all disclosure prohibitions
and assumes no liability for unauthorized use of this data by third

parties. This Notice shall be affixed to any reproductions of this data,

in whole or in part.

(End of notice)

.

2.

3.

,

Table of Contents

Introduction

System Hardware Overview

3.1
3.2
3.3

Controller Module
Controller Module Overview
Connectors and Pinouts

3.4

3.6

Controller card
3.3.1 Controller
3.3.2 Controller
3.3.3 Controller

Sequencer card
3.4.1 Sequencer
3,4,2 Sequencer

Card Schematic Diagram
Card Logic Equations
Card PCB Artwork

Card Schematic Diagram

Card Logic Equations
3.4.3 Sequencer Card PCB Artwork

3.5 Temperature/Shutter card
3.5.1 Temperature/Shutter Card Schematic Diagram
3.5.2 Temperature/Shutter Card Logic Equations
Controller Motherboard

3.6.1 Motherboard Schematic Diagram
3.6.2 Motherboard PCB Artwork

3.7 Fiber-Optic Interface
3.7.1 Fiber Optic Interface Schematic Diagram
3.7.2 Fiber Optic Interface PCB Artwork

Clock/Analog Modules
4.1 Module Overview
4.2 Connector Pinouts
4.3 Clock Generator Card

4.3.1 Sequencer Data Interface
4.3.2 CAM Configuration Latch
4.3.3 CCD Voltage Digital to Analog Converters
4.3.4 CCD Clock Switching
4.3.5 Analog Processor Control
4.3.6 Clock Generator Card Schematic Diagram
4.3.7 Clock Generator Card PCB Artwork

4.4 Analog Processor Card
4.4.1 CCD Video Processing Circuitry

4.4.2 Temperature Regulation Circuitry
4.4.3 CCD Clock Signal Buffers
4.4.4 Analog Processor Card Schematic Diagram

4.4.5 Analog Processor Card Logic Equations
4.4.6 Analog Processor Card PCB Artwork

° Camera Head
5.1 Overview
5.2 Connector Pinouts

5.3 Filter Card

5.3.1 Filter Card Schematic Diagram
5.3.2 Filter Card PCB Artwork

5.4 Socket Card

5.4.1 CCD Socket Card Schematic Diagram
5.4.2 CCD Socket Card PCB Artwork

5.5 Tektronix M745A CCD

. VMEbus interface
6.1 Overview

6.2 Connector Pinouts

6.3 VME200a Data Interface Description
6.4 Fiber-Optic Adapter

6.4.1 Fiber-Optic Adapter Schematic Diagram
6.4.2 Fiber-Optic Adapter PCB Artwork

7. Power Supply Unit

8. Sun 4/260 Workstation

e System Software Overview
9.1 Embedded Software

9.2 'C' Language Control Library
9.3 UNIX Utility Programs
9.4 IRAF Interface

10. IRAF interface
10.1
10.2
10.3

10.4
10.4.1
10.4.2

Starting the Sun 4/260
Running IRAF
ccclacq Commands
ccdacq Parameters

Detector Parameters

Observing Parameters

11. UNIX Utilities

11.1 AISsay utility
11.2 AISFde utility

11.3 AISsetup utility

12. 'C' Language Control Library
12.1 Function Reference

12.1.1 Interface Functions

12.1.2 High Level Functions
12.1.3 Communications Functions

13. Programmable CCD Clock Timing
13.1 Timing Tables

13.1.1 Parallel Clock Timing

13.1.2 Serial Clock Timing
13.1.3 Analog Processor Control
13.1.4 Clock Recombination Anti-blooming

13.2 Filling the Timing Tables
13.3 Timing Table Example

14. Programmable CCD voltages
14.1 CCD Clock Rails and DC potentials

14.1.1 CCD parallel Clocks
14.1.2 CCD Serial Clocks and Summing Well
14.1.3 CCD Reset Gate and Last Gate

14.1.4 CCD Output FET Potentials
14.1.5 Other Clocks and Potentials

14.2 CCD Protection Circuitry
14.3 Software Interface for Programmable Voltages

14.3.1 Sequencer Control of Programmable Voltages
14.3.2 FORTH Interface for Programmable Voltages

14.4 Setting the CCD Potentials
14.5 Programmable Voltage Example File

15. Camera Configuration Parameters
15.1 Format Parameters

15.1.1 Serial Read Parameters
15.1.2 Parallel Read Parameters

15.2 Exposure Parameters
15.3 Acquisition Sequence Parameters

16. Camera Controller FORTH Program
16.1 FORTH Command Interpreter
16.2 FORTH Command Descriptions

16.2.1 Short Form Commands

16.2.2 High Level Image Acquisition Commands
16.2.3 Low Level Image Acquisition Commands

17.

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.2.10

16.2.11

16.2.12

16.2.13

16.2.14

16.2.15

Shutter Control

Temperature Measurement and Control

Format Commands

CCD Voltages

CCD Timing

Camera Readout Speed

Continuous Clearing of the CCD

Clock Recombination Anti-blooming

CCD Image Integration

Time Measurement

System Maintentance Commands

DSP Software Support

16.2.16 Test Functions

16.3 Creating Custom FORTH Definitions

16.4 Saving and Restoring the FORTH Dictionary

DSP56001 Sequencer Software

17.1 68HCll Host Interface

17.2 DSP Functions

17.3 DSP Parameters

17.4 Creating Custom DSP56001 Software

18. System performance

Appendix A:

Appendix B:

Appendix C:

Appendix D:

Appendix E:

Camera Controller FORTH Source Code

Camera Controller DSP56001 Source Code

VMEbus Interface Board Source Code

'C' Language Interface

UNIX Utility Source Code

1. Document Overview

This document describes the Advanced Imaging System CCD

based camera. The AIS1 camera system was devoloped at

Photometrics Ltd. in Tucson, Arizona as part of a Phase 2 SBIR

contract No. NAS5-30171 from the NASA/Goddard Spaceflight Center

in Greenbelt, Maryland. The camera project was undertaken as a part

of the Space Telescope Imaging Spectrograph (STIS) project.

This document is intended to serve as a complete manual for

the use and maintenance of the camera system. All the different

parts of the camera hardware and software are discussed and

complete schematics and source code listings are provided.

1-1

2. System Overview

The Advanced Imaging System (AIS) is a slow scan, high

precision CCD imaging system designed specifically for low noise

image acquisition and precise, highly flexible CCD testing and
characterization. In addition, the system is designed to allow CCD

mosaics to be supported with separate, programmable clock voltages

and output amplifier operating points for each device.

2. l Introduction

The development of new CCD technology has been proceeding

at a rapid rate in recent years. Large format devices of 2K x 2K and

4K x 4K resolution with multiple low readout noise amplifiers,

flexible operating modes (such as MPP inverted operation and

clocked recombination anti-blooming) are now available with even

more new devices in development. New output amplifier

architectures such as the non-destructive readout floating gate

"skipper" amplifiers have proven feasible. Butted arrays of multiple

large format devices are now being developed at several institutions.
These innovations have rendered current CCD cameras obsolete and

developed a demand for a new generation camera system that will

capitalize on the advances in CCD technology.

The Advanced Imaging System (AIS) was developed to support

all known large format CCD arrays and mosaics under development,

and allow provision to future expansion. Several goals were

identified for the system including:

. The system should be sufficiently flexible to

operate virtually any CCD imager, and multiple

OUtpUt CCDs and CCD mosaics, so the user could

change CCDs with minimal hardware modifications.

. The system signal/noise should be limited either by

the characteristics of the CCD or photon shot noise

and the digitization performed to the highest

accuracy available with current analog to digital

converter technology.

. The clock voltages, timing, and other system

parameters should be alterable through software in

order to optimize CCD performance for a given set

of experimental conditions.

2-1

4. The image acquisition computer system should be
capable of accommodating images of multi-
megabyte size.

5. The camera head should be able to be separated
from the host computer by long distances.

In response to the rapidly changing technologies and
techniques associated with scientific CCD imaging, system flexibility,
programmability, and adaptability have been emphasized.

Flexibility is a crucial feature of imaging systems which are
intended for use into the next century. CCD imaging systems designed

today need to be flexible enough to operate a variety of CCD devices
in a wide variety of operating modes. Sufficient clock signals must be

provided to operate different CCD architectures. Operating point
voltages need to be controllable over a wide enough range to support
different types of output amplifier structures.

Systems which are intended to be useful over the long term
must be flexible enough to deliver virtually any desired waveforms
to the image sensor clock inputs, and must be ready to measure the

data thus produced as quickly and accurately as possible. Modularity
of system hardware allows for integration of new technologies as
they become available without complete reconfiguration of the
system. This is especially important in the areas of analog processing,
clock sequence generation, and analog to digital conversion.

Programmability implies the ability of the system's operation
to be controlled not only through built-in commands, but through the
creation of new commands and command sequences which may be
referred to indirectly. By eliminating overhead in the command
interface, and by reducing the amount of time spent transmitting

commands and the chance of communication corruption caused by
outside noise sources.

Programmability allows a system to be more efficiently used in
the collection of data. This reduces the amount of time spent

transmitting commands and the chance of communication corruption
caused by outside noise sources. It also aids in the elimination of
redundant initialization tasks.

An adaptable system is able to be permanently or semi-

permanently modified to better meet the requirements of the
experiment in progress. A CCD imaging system, in order to be

considered adaptable, must be capable of "remembering" user
defined commands, CCD clock and operating point voltages, and

2-2

D
desired timing sequences.. Use of an EEPROM memory, which may be
programmed in-circuit, allows the system state to be stored at any
time. Default parameters and command sequences may be retained
from session to session, and may be modified at any time by the
user.

2.2 System Hardware

The system was designed in such a way as to allow the cost of
the system, at least to some extent, to be scaled with the flexibility
required by the end user, without sacrificing performance. Modular
construction allows a particular system configuration to be
established for each application, without eliminating any of the more
advanced features of the system. Single port camera systems are
supported with a set of five printed circuit boards. Additional ports
on the same device may be supported by the addition of one more

board per port. Additional ports on other devices requires one board
to support the clock voltages required for the additional CCD and one
board for each CCD output port used. The system software supports
up to eight CCD devices and an unlimited number of output ports.

The amount of hardware required for the AIS 1 camera system
depends on the application, and system configuration. The minimum

requirement is as follows:

System Controller, performing system control tasks
such as communication with the host computer/user,
CCD temperature measurement and control, and
shutter control.

1 DSP Sequencer, generates the CCD clock voltages and
timing waveforms.

1 Clock Generator, containing the programmable CCD
voltage references, and switching circuitry,.

1 Analog Processor, containing signal processing chains,
and CCD clock buffers.

1 CCD socket card and preamplifier, located in the
cryostat.

Multiple ports on the CCD may be operated by adding one

analog processor for each additional output port desired. If different
clock or CCD output FET operating voltages are desired for the

2-3

different ports, or if additional CCD imagers are added, additional
clock generator cards are required.

2.3 STIS AIS1 Camera Configuration

This specific camera system, the STIS camera system consists
of the following hardware:

Camera controller, comprised of three circuit boards.
There is a controller board, a sequencer board, and a

temperature and shutter control board. Each of these is
described in more detail below.

2 Clock generators, one for each of the two ports being
used on the CCD in this system. Duplication of the clock

generators allows maximum optimization of the
operating points of the two output amplifiers.

2 Analog processors, each a 16 bit Dual slope integrator
operating at pixel rates of 50 kHz and below.

Filter board, located in the cryostat. The filter board is
used to filter the DC voltages being applied to the CCD
as well as serving as the location of the reset and

summing well switches.

Socket card holding the CCD and the first stage

preamplifier circuitry.

1 Tektronix M745A CCD.

2-4

3. Controller Module

3.1 Controller Module Overview
The AIS1 controller module contains the digital electronics that

communicate with the host computer, in this case the Sun

workstation, and control the CCD and analog processor to read the

data off the imager. The controller module also contains the circuitry
that is used to measure and control the temperature of the CCD and

the circuitry required to drive the shutter solenoid.
There are five circuit cards inside the module. Three of these

cards are the embedded controller electronics consisting of

microprocessor based "controller" and "sequencer" cards, and a

"temperature/shutter control" card. These cards are connected to one
another via a simple "motherboard" and the connectors on the
module's chassis are connected to them through a "fiber optic
interface" card.

The camera controller module is normally bolted to the side of
the camera head. The controller module may be remotely located

from the camera head if that is necessary. This requires the use of

some longer cables to connect it to the Clock/Analog Modules and the
camera head.

Below, the camera control module's external connectors are
described, and the boards are then examined individually. Complete

schematics and programmable logic device equation listings are

provided for each of the boards.

3.2 Connectors and Ptnouts
There are several connectors on the camera controller module.

These are used either to connect the module to the host computer or
to connect the controller module to the clock/analog modules. The
connectors will be discussed below.

The Connector labeled "Camera Control Source" connects to the

clock/analog modules. It carries the signals from the DSP sequencer
which control the clock and analog cards. These signals are generated

by the DSP at a maximum rate of 10 MHz. They are differentially
driven on the cable, but over limited distance. The data sheets for
the drivers use indicate that these signals could be driven as far as
100 meters.We have successfully tested 25 meters but have not tried

longer distances.

3-1

Camera Control Source Connector Pinout : DB37M

pin function pin function
1 WR+ 17 DO+
2 WR- 18 DO-
3 A0+ 19 DI+
4 A0- 20 D1-
5 AI+ 21 D2+
6 A1- 22 D2-
7 A2+ 23 D3+
8 A2- 24 D3-
9 A3+ 25 D4+

10 A3- 26 D4-
11 A4+ 27 DS+
12 A4- 28 D5-
13 AS+ 29 D6+
14 AS- 30 D6-
1 S extra+ 31 D7+

16 extra- 32 D7-

pin function
33 unused

34 unused
35 unused
36 unused
37 unused

The connector labeled "RS422" may be used to connect an
RS422 terminal to the camera controller. It is also used to connect
the camera controller to the VMEbus interface. The nature of the

contents of these transmissions is described in the camera system
software manual.

RS422 Communications Connector Pinout: DB9M

pin name function

1 TX-
2 TX+
3 RX-
4 RX+
5 GND
6 unused
7 unused

8 unused
9 unused

transmit data -
transmit data +

receive data-
receive data +

controller ground

q

q

q
3-2

There are two 'ST' type fiber optic connectors on the controller
module that are used when the camera controller is connected to the
host computer via a fiber optic line. The optical fibers may be used
instead of the RS422 option. Switching from one to the other requires

moving a jumper on the fiber optic interface card
The connector labeled "power" is used to provide the DC

voltages necessary to operate the controller electronics. The power is
normally provided by connecting this connector to the power supply
module with the cables provided. These cables are approximately 3
meters in length. The power supply voltages provided must be

regulated, as no regulation takes place inside the module.

Controller Module Power Connector : DB 15M

pin voltage pin voltage

1 -15V 9 GND

2 -15V 10 GND
3 +5V 11 GND
4 +5V 12 GND
5 +15V 13 GND

6 +15V 14 GND
7 +28V 15 GND
8 +28V

3.3 Controller Card
The camera system controller is based around a version of the

Motorola MC68HC11 microcontroller. Produced by Motorola for New
Micros Inc., the F68HCllFN microcontroller contains a FORTH

interpreter in the internal ROM. All camera operation is coded in a
mixture of FORTH and assembler code. System software may be

extended by the user, and modifications may be retained from
session to session. See the AIS1 camera system software manual for

details concerning the FORTH software.
The controller board is a modified version of a camera

controller board we designed, based on the AIS1 prototype, for a
somewhat different camera. Therefore, some of the parts of the

controller board are not populated, and are irrelevant to this
discussion.

The central processing unit is U1, the 68HCll. The 68HCll

contains a variety of on chip peripherals which are used in this
system. The 8k ROM contains the Max-FORTH interpreter. The 256

3-3

bytes of SRAM are used by the FORTH system. The on chip EEPROM is
used for interrupt vectors. The timer subsystem is used as a free
running millisecond timer. The Serial Communications Interface (SCI)
is used for communication with the host computer. Various port bits
are used to control other circuits such as the shutter driver. The
Serial Peripheral Interface (SPI) is unused.

The 68HCll is clocked by U4, an 8 MHz crystal oscillator. The
68HC1 l's instruction cycle when clocked at this frequency is 2 MHz.

The 68HC1 l's multiplexed address/data bus is demultiplexed
by U3, a 74HC573 transparent latch.

U5 is a DS1231 from Dallas Semiconductor which provides a
clean reset pulse to the 68HC11 during power up and power down.

U6 is a DS8921 IC from National Semiconductor. This IC
translates the TTL level SCI signals from the 68HCll into the RS422
level signals connected to the RS422 connector on the outside of the
camera controller module chassis.

U8 is a 32k x 8 bit static RAM device used to hold the FORTH
dictionary while the 68HC11 is running. U15, shown on the schematic
as a 32k x 8 bit EPROM is actually a 28C256 32k x 8 EEPROM device

which may be programmed in the circuit. This EEPROM holds the
default FORTH dictionary. When the system is reset, the contents of

this EEPROM are copied into the SRAM. The contents of the SRAM
may be copied into the EEPROM at any time via the FORTH command
set.

U16 is a 74HC574 latch which may be written to by the
68HCll to control external hardware. At this time U16 and the

outputs located on P3 of the controller card are uncommitted, and
not brought out through the controller module chassis.

U7 is a programmable logic device (PLD) used to decode the
addresses generated by the 68HCll and produce the chip select

signals needed by the various peripherals. The listing for this PLD is
provided after the schematics at the end of this section.

U18 is not installed. Before modifying the board to accept the
28C256 EEPROM, the SRAM was supplied with backup current from a
battery when the system was not powered up. This IC managed the

SRAM's power.
U2, a 68HC24 "port replacement unit" from Motorola is not

installed. The card was designed for use in a camera controller using
a DSP located on this card as sequencer. U2 was used by the 68HCll
to communicate with that DSP. U9 was the DSP sequencer in that
camera. It is not installed. UIO, Ull, U12, U13, and U17 were

associated with that sequencer and are not installed. This camera has
a separate sequencer card, and there is a DSP56001 on it instead.

3-4

The 68HCll's address and data bus, along with several I/O port
lines, are connected to P1, the motherboard connector. These lines
are then fed across the motherboard to the other cards in the system.
The connector is shown on page 3 of the controller card schematic.
The relevant lines are :

DO - D7
A08 - A15
OE*
WE*
AS
E
RESET*
PAO - PA7
PEO- PE3

The 68HC1 l's data bus
The 68HC1 l's address bus
A qualified 'read' signal from the 68HC11
a qualified 'write' signal from the 68HCll
the 68HCll's address strobe
the 68HC1 l's instruction clock

the system reset, produced by U5

68HC11 port A
4 bits from 68HC11 port E

The controller card uses power only from the +5V supply, and

returns current only to the digital ground, named 'gnd' on the
schematics. There is no +15V or -15V supply current used on this
card.

3-5

3.3.1 Controller Card Schematic Diagram

3-6

rl

C',I

C_

qll

It)

p,,.

CO

ii ii

o

o_e m
_oo _ M ms
444 a N +_

N w e

r,,

. ,.,++.<Oi

"m-I " _ . o_

.,. ,,, ,+

tJlll h II_ -l,

x ,

III
o

_0

--t1-
im

i,+,,4
u •

_ •

-tt-

--t1-

°J--t1-

t,'4

In

"1

_P

I I m I

+: tlilll'....................., -,!ttttt t t- +...................+.,
........ .}.}.}mmRm m_ w_

m • •

k 0

mmIimmmm

:1:1:1=1"1"1"1"1

m

m h

m "llSl o
M -IM _,

O| _IE'4 _ =

=1 "1_ ! i

=| r.noO..IO

_'..I o
C_ r. ll=l

li _ -- .

12

h
m_

U •

--tt--

-tF--

--tF-

_ •

---41-
b

U •

--IF-

i i

ol i

0

0 •
+4 0

D

* I

,._
=_.

-]l--"
h

Ip •

-t{--

-t1"-

-lt--

,p .

- tl-'-

p •

-_1--

i[II
Im

+,t.+
,I "

-4F-

•11.--.-4-

J

q

tO

r"

W

I_
!i °

m

N
w

N

m

m
N

e_

3.3.2 Controller Card Logic Equations

3-10

Name AISDCD;

Partno none assigned;

Date 1/24/9!;

Revision 01;

Designer Doherty;

Company AdvancedTechnologies;

sembly new AISC addressselect;

_t_on U?;

GI6VS;

/* This filecontainsthe sourcecode for the AIS controller */

/* addressdecode PAL. */

/, */

/, */

/, */

/* Revisionhistory: */
I* *I

/* Rev. 01 1/25/9! */

I* _/

/* TargetDevice = LatticeGALI6V8as PALI6L8 *I

/, "/

I* inputs*I
Pin 1 : el5;

2 : el4;

3 : el3;

Pin 4 : el2;

Pin 5 = el!;

Pin 6 = as;

Pin 7 = eclk;

Pin 8 = rd;

Pin 9 = [reset;

I* 6811 address15 *I

I* 6811 address14 *I

I* 6811 address13 *I

/* 6811 address12 */

/* 6811 addressii */

/* 6811 addressstrobe*/

/* 6811 E clock */

/* 6811 RD/WR*strobe */

I* systemreset *I

/* outputs*/
Pin 13 : !latch;

Pin 14 = !ram;

Pin 15 = !eeprom;

Pin 16 = memdis;

Pin 17 = !oe;

Pin 18 = !we;

I* outputlatchselect */

/* chip select for RAM */

/* chip selectfor EEPROM*/

/* memorydisable;used internally*/

/* systemoutputenable */

/* systemwriteenable */

I* addr is the addressinputsas a fivebit word *I

FIELD addr : ia15..i16;

/* RAM will go from $0000to $Sffffor a totalof 24k */

ram = addr:i0000..5FFF6& !memdis& [reset;

/* EEPROMwill go from $6000 to $DFFFfor 32k with some holes */

eeprom= addr:i6000..DFFF6& !memdis& [reset;

_the outputlatchwill go from $B800to SB8FF*/

tch = addr:iB800..BFFF6& !memdis& !reset;

memdis: addr:iB000..BFFF& /' internal68HCliIIO registers*/

P addr:iC000..CTFFi

P addr:ICS00..CFFF6

P addr:iE000..FFFF%

? reset ;

/' DSP location "/

/* temp/shutterboard location t/

/t inte_al FORTH in ROM */

" ounpunenableforvariousdevices'/

= _d & ecik & !reset;

/*write enablefor writabledevices_/

we : !rd & ec!k & !reset;

3.3.3 Controller Card PCB Artwork

3-13

®
®

(J

RP2

C10

CD

_0 _°
CD

®

oI .

onl

I--
Z
UJ
Z
0
0_

0
¢..)

0 O0

• O0
OO0

00
000
O0

O0

)OO00OO _OO

coo _oo
gO

I! •

000
000
000

O0 •

O0 IO

O00ooooooooo • •

•
OO00OO04 J •

OOOO

• O

.o..o..._"%. .+.o
o, •

Q

@

on •

.... O00 ON O090990000 • •

• ieooeeeeoo--_llO_ •

uoooooo • uoeeeoooo Ill

"''''""" im
ooooooooooooo uoooooooool[_ •
ooe oo oo ooo uoooooooo 1]!
oo oo • oo oooooooooo.ll u
go go IIN '_
oo -o ooo IR --.
• • mooooooooollN -a-uo
ooe • • • • mooooeeoo IR-_ o-
oo • • oo • oooooooooo_L_]._

mmo • • • _----

oo .0 ,. .o. ;._;
OO oO • • OO It999999990 _-_-.

oo oooo ooooo oo m66666666 _-_
oo oooooooooooou aooeoooo ;o;

O00

on /------o o o • • • • ooo

oooooo l/----o • • • • • • • • oooO0000000_ O0 O0 OO0

oo oe oo I o o \oo • gee• • • • • • I 4_y_ ._I_,_.U._l • • •
oo oo mmoi __oo %%ooo
oo oo ool _ _oo-x_loo •

a on ooooooool ooooo_qlo|oe llllOOO

• " IT'"f'"[. .
• .i • • ... • ,1-1..-_':"

• i el i. ,_...._._......• II • • i to oee
_1 ; ° I " Im ooo
. o • i lLnoolee
• • OO0

• • • IIII IOoOO
OOOO

OO • lOgO I

II • •
O0 • • •

go •

• •:: : • .io......l•
• • •

OO • • O_OO0 L • •

" "I'"""
omm • •

• • oo66
O0 •

• • • --gig

• ioeooooooooooo on •

® ®

.0

O0
oo

W
Z

a.

a
Z

O
n-

o. 0000000 _0 0_00000000 ,, "

00
ooo000oo

• ooooo000oo
0000000000

0o0000
QO000000

O0 QO O0
oO O0 0_
Oo oo oO
O0 O0 O0
O0 OOQOOO00

_ooooo

O0 ,_"
oo • • _;

O0 • •
O0 • •
oo • •
O0 • •

"_'o •
O0 ,':

00000ooo
000000ooo
oooooooooo

oooo00oo
000000000

• oooooooooo

o0ooo0o0
ooooo00oo

000o0ooo

0000000
O0000tooo
O0 QO
O0 QO
O0 0_
O0 o_
O0 Oo
000000000

000000o

0000000000

ooo0oo00o0

;_ • _._"• 00o0000".;

.'_" 0000000_0000o0

00000000_0000_

_ ooo000ooo00o00

O000000000DOD_

000
000
000
000
000
000
000
000
000
000
000
000
000
000
0_0
000
_00
000
000
000
000
000
000
000
00_"
000
00_
000
00_
000
00_;
000

®

e ®

OO
Oo
O0
oo
o::

w
Z

_J

w

0
£1.

0:: ::00
:'000000

oo00000

":ooooooooo

ooeoeeeeooooo
ooo oe oo oee
oo o:" • oo
oo oo
ee ::o oeo

o::o • :: :: •
oo :: • oo

oo ::o ooo
oo :: :: oo
oooo ooooo oo
ooooooooooooo

::ooooo
oooooooo

oo oo oo
oo oo oo
oo oo oo
oo oo ::o
oo oooeoooo

oooooo

ooooooo

• oooooooooo
., ::oooooooo
• " ::ooooooooo

oooooeoooo
::oooooooo
::ooooeoeeo

oooooooooo
::oooooooo

• ::ooooeoooo

oooooooooo
::oooooooo

::ooooooo

ooooooo
ooooooooo
oo oo
o:: o::
oo oo
oe ::o
oo oo
ooeooeooo

oooooeo

o,
,°

oo

::0

Oo
Oo
0"
O0
oo
O0
O0

:-0

O0
°,.,
,o ,.

• ::000000ooo

:'0 "-
,°

O00eO00000

• :: ::000000000

• • 0000000000

• O000000000eO00

00000000000000

0 ::O000000000eO0

00000000000000

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
CO0
000
OeO
000
000
000
000
000
000
oee
ooo
0oo
coo
00o
00::
000
00::

• •

.°

:'00o

000o

ee •

®

ohm •

• 0000000011 0000000000 • •
• • •

• mMmm 11000000000 • •

.... wwu --_ 1100000000
-- 0000000000

11000000000 •

0000000000000 11000000000 •

000 00 00 OOO 1100000000

go 00 • 00 o9999000oo dL
o• 0o | _- ._
00 i• •go '_-=_ _ I1
• - - • u00000000o HUm[n

000 _ m • • i00000000 O_

000 - - Olo eTTT___i• •

eo oo I0 gee _ '_-- - Iili_'IIILOOD• ... • •_.HH"-_'"
o• oooo •••co oo moooo_oollll_

00 " / ooo/.oooo Ix___ _
oo00oooo000m _ I I1_ w

• - | I If, __.._...o
N I°l°l°l°l°l ° or,e__o_o• • qp,e_o• •

n" NeleLOlOlOlOjO • o_------ I • • • • •
LU 00 11olO'll lll'ee--_il%OO jeo • oeo

<_ 00.--_010/I Ill 10 I1% 00 0i • gO•"'"00 OO 000
000• •

. o....j _ ..._.._j__ :::
•00• HI[• . ooeooo.6o]olll o.o

• Jill • iI J III ° ooo

.o .1111. [.o.oo..o II1":::
I I0 OOOOOO0Ote ,ll_--_O O OIIII

• • •Ill "_ I__ ! lion•o•
• • IIII • I; [_noL__o•

• . o,, • • o?.oo.oooooo D_-_. -°

.. : •
• •

00 • • •000oooo00oooo • •
oo
00 • • •

• • • 00000000000000 •
011

• • •

• • OOO0

00 •

• 0 •

•000
• IN••••••••go•g0 O m

121

®
®

om

0
"3

0
m

m

000000

01

00

00 •
00 NO

O0 •
OO •

00 •
00 •
01 •

O0
mO

m

O0

gO
00

OO0
oOO0

NOO0

gO0

oOO

OO0

OOO

OO0

OOO

OOO
OOOO

nooo

000
000

•__::
olo •

,Dig •
gig •

o_oo

• •

oooo

Iooo

os •

®

[]

ol-

v
C/)

CC
111
0

0

i •

UOOOOOOOOO
IOOOOOOOO

UOOOOOO I OOOOOOOOO O
noooooo4poo

oooo4poooooooo HHHPOOOOOOO
000 00 OO OOO HDOOOOOOOO
OO OO • O4P OOOOOOOOOO
4)0 OO

000000001 OOOOOO0000 •

O0

n

O
00 OOO

-- "'-""t-',!IOOOOOOOOD 1% | | "
OO OO nO 006 °•

OOO
O00

OO 00 • • O4P IOOOOOOOOO OOO
OO OOOO OOOOO 00 iOOOOOOOO OOO
OO OOO4HH_4POOOO! OOO

nlooOoooo ooo
_ OOO

OI OOOOOOO OOO

OOOOOOOOO 0OO
OO 00 0OO

00
HH gig0 iO_

OO OO N OO 00 000
OO OO OO OO OO OOO

O4H_O4_4_ OOO
OOOOOO OOOOOOO OOO

OOO

• • • ooO_

• •] IO_
m_ • • iOOOOOOOOO OOO

. . $ s • |$$$
• • • IOOOOOOOOO OOO

OOO
• • • • I OOOOOOOOOO4_OO OOO

.=: : " "'e
U-I $..o....o..o... •

•| |• |OOOOOOOOOOOOO0 • •]
• • OOOO

OO •

I• [] NoHn
i nN_eeeeeeeeeoeo om

®

3.4 Sequencer Card
The sequencer card generates all the timing necessary to

operate the CCD and the analog processor. The sequencer card
includes a Motorola DSP56001 digital signal processor (DSP). The DSP

operates with a 100 ns instruction cycle. The DSP bootstraps its
program code from the 68HC11 through the host interface.

A portion of the DSP's address and data busses is differentially
driven on a short cable to the clock generator. Eight bits of data and
six bits of address information, as well as a write strobe, are

provided. The DSP performs CCD control by writing to memory
mapped devices on the clock generator. Up to eight unique clock
generators may be addressed. Any subset of the eight clock
generators may be accessed simultaneously. The DSP may write to
the clock generator locations at its full execution rate of 10 MHz.

The heart of the sequencer card is U1, the DSP56001, it

produces all the signals required to operate the CCD and analog
processor by writing data into registers on the clock cards. It does so
under command from the 68HC11 on the controller card.

The DSP includes a host interface port, through which
commands and data may be transferred. This byte wide bi-
directional interface is tied to the 68HC1 l's address data bus through
the motherboard. The eight registers of the DSP host interface appear
to the 68HCll as memory locations at addresses $C000 to $C007.

The details of the operation of the host interface are beyond the
scope of this document. See chapter 10 of the DSP56001 user's guide
for more information. Since the 68HCll's address/data bus is

multiplexed, US, a 74HC573 transparent latch, is used to latch the
low order address bits. The 68HCll controls the operating state of
the DSP through U4, a 74HC574 latch, via which it may reset the DSP
and issue interrupts. This latch appears in the 68HCll's memory

space at address $C100. A programmable logic device, U3, a
PAL16L8, is used to decode the 68HCll's address bus and generate
the chip selects for the DSP interface and the DSP control latch.

The DSP has three memory spaces. These are referred to as
'program' memory, 'x data' memory, and 'y data' memory. The DSP

program resides in program memory of course. At startup the DSP
has no program to execute. The DSP is then reset by the 68HC11 in a
bootstrap mode in which it loads its internal program memory with
words transferred through the host interface. Additionally, the DSP
has access to an external memory device, U2, a MCM56824 8k x 24
bit static RAM from Motorola designed specifically for the DSP56001.
The DSP also loads this memory through the host interface.

q

a

q
3-22

The DSP's address bus is decoded by U8, a PAL16L8-10 from

Texas Instruments. Chip selects are generated for the DSP's various

peripherals. U2, the external SRAM, is one of these. Additionally,

there are two 16 bit data ports. One of these, composed of P2 U9, and

U10 is a 16 bit wide input port. The other, composed of P3, Ull and

U12, is a 16 bit output port. These ports are not currently used in

the system and the connections are not brought to the outside of the

controller module chassis.

The DSP's lowest 8 data bits and lowest 7 address bits are

connected to a set of differential drivers, U13, U14, U15, U16. These

differential drivers are of the 41LG type manufactured by AT&T

Microelectronics. They produce a "pseudo ECL' output which may be

driven at high speeds over relatively long distances. The output pairs
from these drivers are tied to a PC board mounted male DB37

connector. The pin out of this connector is shown below. Note that

this is the same pinout as for the DB37 on the controller module

chassis. There is a one to one ribbon cable connecting the two.

Sequencer Card P4 Connector Pinout:

pin function pin function
1 WR+ 17 DO+

2 WR- 18 D0-

3 A0+ 19 DI+

4 A0- 20 D1-

5 AI+ 21 D2+

6 A1- 22 D2-

7 A2+ 23 D3+

8 A2- 24 D3-

9 A3+ 25 D4+

10 A3- 26 D4-

11 #,4+ 27 D5+

12 A4- 28 D5-

13 A5+ 29 D6+

14 AS- 30 D6-

15 A6+ 31 D7+

16 A6- 32 D7-

pin function
33 unused

34 unused

35 unused

36 unused

37 unused

3-23

3.4.1 Sequencer Card Schematic Diagram

3-24

|ili|

|S

I i'M • I

iL J_

liii il I II I[M-! r, N-HI]I _II I I I _ NN-ii"
J.l-I.!U ulu! i

iJ

liiir iliiii
_ _,_ '1 _i

i

u_

u

I

I'

• II

i'
|

' III III
_I +N4_I
_.iiiiil_tl._ o, _.ttiiiiiil_

:I _ll 51 Ji

1t1®' '1_'
II 11111111 !1111111

_ll :ii ii:iiiiiill

l,.' 0 i_ 0.. II_l_l_l_l_l_lJ_l_ll_ ..__

I_I I

m-If,

•-.L I_
_'11-1i-I-rl-I-I I-II_l

iliiiiil

;liiltU

'I,,,,,__"
--..:::::_i

"- I N I "> I _,

•- [,,, i ,',

_ |

i -F'o

rliTITi-l-iTITI1 MTI-H il liT 1 i- i_il_

__'_i
| | |lig

_L J|
lrlTl-I-IIIIIIITfl]Tl-ITfllflllll - I1_

J..IJ.u._WJJj,.Id.W.LIJ.IJj,.IdJd_.Ll.ld._:J
I I I I i I I I . '. : : : - : [$ 7 Z'T'[-"'7":":'--":"?"- " -

I
I

lj

lii
q.p

f

_,_i-t:i-iiiiiiiiiih:iiiiiii-ii i i i iii,i

-I III IIII JTFrrrrJ ii iii ii rllJi

Ii1111t. _ss_ss--s'liiiiiiiikl i
t

•- [<, [,,

3.4.2 Sequencer Card Logic Equations

3-28

Name DSPIO;

Partno none assigned;

Date 4/2/91;

Revision 01;

Lesigner Doherty;

Company AdvancedTechnologies;

_embly DSP card DS? addressdecoder;

ion US;

PI6L8;

/, */
/* DSP addressdecoder */

/, */

/, */

/, */

/* Revisionhistory: */

/, */

/* Ray. 01 4/2/9! */

/, */

/, */

,_***_,t,tttt,ttt,_tttt*tttt*t_i*t_T_Ttttttt*_ttt**tt*tt_TTTTtJt_tt*/

/, */
/* TargetDevice= 16L8 */

/, */

I* inputs*/

?in 1 : !ps;

min 2 : !de;

: [rd;

4 : !wr;

?in 5 : xdata;

Pin 6 = !reset;

Pin 7 = alb;

Pin 8 = ald;

Pin 9 = el3;

Pin ii = el2;

Pin 13 = all;

Pin 14 = el0;

Pin 15 = a09;

Pin 16 = a08;

I* programm_mory select *I

/* data memoryselect */

/* dsp read signal */

/* dsp write signal */

/* x datamemory select */
,//* systemreset

/* DSP address15 */

/* DSP address14 */

/* DSP address13 */

/* DSP address12 */

/* DSP addressii '/

/* DSP addressI0 */

/* DSP address09 */

/* DSP address8 */

/* outputs'1
Pin 17 : !ram_cs;

Pin 18 : !od_clk;

Pin 12 = !id_en;

Pin 19 = !cam_wr;

I* DSP RAM chip select *I

I* outputdata clock *I

IT inputdata enable 'I

/* qualifiedwrite strobefor camera*/

1' addr is the addressinputsas a five bit word */

FIELD addr : ia15..a086;

the DSP'sexternalRAM is at P:$0000to P:$1FFF*/

for a totalof 8K */

ram_cs : addr:i0000..iFFF6& ps & !reset;

/* outputdata latchis write only at y:$0000to y:$00FF*/

od_clk= addr:i0000..00FF&& ds & !xdata& wr & !reset;

/' input data latch is read only at y:SO000 to y:$FFFF */

iden : addr:iO000.. OOFFi & ds i !xdata & rd & !reset;

/t cam_wr is a qualifiedversionof the DSP'swritepulse '/

/' the camerais writeonly at Y:$FFO0to Y:$FFFF t/

_m_wr= addr:IFFOO..FFFF_& ds & !xdata& wr & !reset;

Name DSPDCD;
Partno noneassigned;
Date 1/24/9!:
Revision 01;
Designer Doherty;
Company AdvancedTechnologies;

,embly newAiSDSPaddressselect;
Ltion U3;
.ca GI6V8;

/* This file containsthe sourcecode for the AIS controller */

• addressdecodePAL. */
, */

'* Revisionhistory: */

'* Ray. 01 1/25/91 */

*I

/* TargetDevice= LatticeGALI6V8as PALI6L8 */

l, */

/' inputs*/

Pin i : al5;

2 : ald;

3 : el3;

Pin 4 : el2;

Pin 5 : all;

Pin 6 = el0;

Pin !S = a09;

Pin 17 = a08;

Pin 7 = [reset;

Pin 8 = eclk;

Pin 9 = !oe;

Pin ii = !we;

/* 6811 address15 */

/* 68ii address14 */

/* 6811 address13 */

/* 6811 address12 */

/* 6811 addressii */

/* 6811 addressi0 */

/* 6811 address09 */

/* 6811 address08 */

/* systemreset */

/* 6811 E clock */

/* systemoutputenable */

/* systemwrite enable */

/* outputs*/

Pin 13 : !dsp_wr;

Pin 14 : [dsp_cs;

Pin 19 : !dsp_ctl;

/* DSP host portwrite signal *I

1' DSP host port chip select */
/* DSP controllatchselect */

/* addr is the addressinputsas a fivebit word */

FIELD addr : ia15..a086;

/* The DSP'sactualaddressrange is $C000to $CTFF */

dsp_cs = (addr:iC000,.COFF_& we & eclk & !reset)

P (addr:iC000,.C0FF6& !reset);

wr : dsp_cs& we;

dsp_ctl= addr:;Cl00.,CIFF£& !reset;

/* write cycle*/

/* read cycle *I

3.4.3 Sequencer Card PCB Artwork

3-32

!! ,

!m

® ! ®

e
I ii II

SILKSCREEN (TOP ONLY)

I

II

i Z

I II
I

I
U13 U14

U15 U18

g _/

SOLDER MASK

oooooooooo oooooooooo • ooooo
• BOOOOOOOi! IOOOOOO00! IOOO0 •

OOOOOOOOO0 • OO00000000 OOOOOOO0

. .oiOOOOOOOO0 iOOOOOOOO0 • UOOOOOO0

..OOOOOOO0 • OOOOOOOOO0 OOOOOOOOO0 n • I t o_

t o"t o" I_

,lOOlOlOll lI ilOlllllOl . ,tOllOllOl ' _l _• • ; • ; - o;llllltllll

•°000000000000000000000000000 t t O• t 0--.0

• OOOOOOOOOOOO0 • • • • • ;o.oo,,,oooo• oo, o,o _o
• OO0 OO0

OOOOOOOOO.. OOO gO0 OOOOOO. OI t M0 O•
;o
dhO

OO0 OO0 oooooo.o,t t t t ;o•,ooooooooo°,° ooo ooo oo _0
OO0 OO0 O0 O0 • = = = ;oooo ooo ,o o,,.o

oo.oooooooo..ooooo.ooo,o. oo-. :" " t;eeeeeeeeoeeoe oe oe
IooIoooIoo IOOOOOIOOIOOi OOOOOIOII • O 0

• OOOOOO0 • ram"

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOR
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOB

O OOOOOOOOOOOO000000000000OOOOOOOa O

O

e

TOP LAYER

e

e MID LAYER 1 e

0000000000
WOO0000000

0000
NO00 00000

000

IO

OOOOOOOOO0

noooooo/oooo

_0000000000
0000000

• 0000000

bOO •

\

WOOOOOOOO0

oo
O0 OI

oo •
OOOOI OO • •

OOOOOOOOOOOOOOO0| •
OOOOOOOOO0000000OOOOO00000 DOOOR

DOOOOOOOq

O o
• n o

O

e

e MID LAYER 2 e

OOOO00OOOOOOOOOOOOOOOOOOOOO0

e

[]

_OOOOOOOO0 IOOOOOOOO0

I OOOOOOOO_

I_ *°O0 _ OOO

N_OOOOO0

O0 • •

OO0
OOO0 • •
OOOOOOOOOOOOOO000000000OO000OO0 O

O

e

e

e

::OOOOOOOO0 • ::OOOOOOOO0 ::OOOOOO0
O

nmooooooooo iOOOOOOOOO [] iOO::OOOO

mm

::ooooooooo • ::ooooooooo ::ooooooooe _ ,: | ,_
,..oo..oo. _ ...oooo.o.. H.ooo.o.. : : :
::.o.ooo.o.: .o..o..o.....:: • : : : :

• o..oo.oo.o... : : j •
• •WOOOOOOOO0 : OOOOO::OOOOOOOoo0gO0 • •

::.OOOOOOO. : go. go. i iOOO OOO OOOOOOO I I

• O::O ::go OOOOOOOOO : :
gO0 OO0 OO0 O0 : :

,ooooooooo oo. .oo oo ::_•$ $:
ooo ooo ::o o,. _ $ •::OOOOOOOOO OOOO::O0::oooo0 O:: O0 • : •OOOOOOOOOOOOO O0 oo
oooooooooooon ooooooooo •

IOOOOOOOOoO OOOOOOOO

ooooooooooooooooooooooooooooooom
ooooooooooooooooooooooooooooooom

o::O::OOOOOOOOOOOOOOOOOOOOOOOOOOOOio

O

e

e

I 0000000000 :: 0000000000 0000::000 |
0 |

• • _ |
iOOOOOOOO:: ,:00000000:: • noooooo:: . I

IOOOOOOOOO0 • OOOOOOOOO0 OOOOOOOOO0 • • • • ;O
• • • • _°: i

• _ • • • ' • w:: I
-oooooooo.: I -.oooooooo': • -oooooooo': • • • • o• I
...o..o... ::: • " ;. : : : :.: I

I ..oo..ooo • • • • .. I. -- OOO0::O0::OOOO0 -, "" - 6" - WO

• _ _ _+_ O w •

OOOOOOOOOO _O u uu .._ • • [] • ..O Ii • _-_-.-. ----x o::ooooo • • • • :o i
i • u_.. Y-_- oooooo::oo • • • • _-o i
i ,.oooooooo.. --.. .,-.. ooo oo • • • • -o i

., O0 O,.O • ,. • • •
ODD ..go ., • • •I o.o,.ooooo,oo__ ... , . : • IOOOOOOOOOO • O mm• • •

i oooooo::oooooo -'-" -.. .. .,., • o • i
I .:oooooooo:: oooooooooooo, ooooo::ooo • o, I

" • O::ilOOO • •--

I ooooooooooooooooooooooooooooooo,m J
i OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO0!I v I

In O.. o;. o.ooooo.oooooo.oooo..oo.• I

3.5 Temperature and Shutter Control Card
The temperature/shutter card contains the circuitry needed by

the 68HCll to operate an electric solenoid shutter and to measure
and control the CCD temperature.

The board used in this system was, as has been previously

mentioned, designed originally for use in a different camera system.
It has been adapted for use in this camera system. The original

system incorporated two shutters and four temperature sensors. In
this application we require only one shutter and one temperature
sensor, and so various parts of the board have been left un-installed

because they are not being used.

3-42

3.S.1 Temperature and Shutter Control Board
Schematic Diagrams

3-43

j

J

m

h

,glk Out
U a,,ql_

+"_"_ ["="I "M
1,40 FI

m m I,m,

OD|

_'8'B

wig
Io

x

- -L-i-i.l-L..-. I i

i

I-I

N

qm

in

_o

r-

UlII _(,ll
III

m

l

I-I

¢_1

co

/

4
14
I

o

!\ '
I o

I
!
I.o.

el
II

14

II
:b

,ll

IX
I
II
al
ii

0

I

\
I

m

ii
Ii
II
ii

I
o
ii
ii

ii

.1
kl
ii
1.

\

4

_|

I
0

O
II
II
D

;11

|

o
411

o
,%,
hl
0

0
14
!+ Q
4 I
U
M

4 I- _L I
, I U I

_m

4

'_=
i-"

I1[

IJ
I'

I

i

i

II
I+
0
ii

1"4

N

Cq

Ul

t_

W

• : |.- :
| :- | :"
! :o" ! _!

I

a
M

0

I

B

|

|
I
a
|

1

0

1,4

I

I

M

0

i ii i i i I i i i i i i

r4

N

. .

4.

i

.I
o 4_

U
4

O
N_O

_ . w.

!"

, :}
-I-I:1

I_ A a

m
IIIP

0
o
1,4

04

oo_O ,,..n IB

;I'I'I=I:I_I:I:I "I:IS
iiAmglmma_ IqN
aatlaaaaA

°uB
mm 4

al

4

N 0.; _1
M II

NIIml
0 II
M *U M O *,l N gP)

:I=I:I:I_:I:I:I:I:I
0000

ii "
"1"1"i"1"i'i"1"1"1=1:1:1

il

n

li,
Om

m

o_

e0

m a_

|
-[

m

N 0
I
D II

0
14

i
i

N

0

_0

1

0

A

IIIIIIIlIIIIIIH..II_

3.5.2 Temperature and Shutter Control Board
Logic Equations

3-49

r_r_n_ zsne assL_ze_;
.... ;'_ 9 sQ! ,

?.evisicn o:°'.,

resider Dohert7;
[cm.pany Adv_cedTechnologies;
se.'ioly =_'i....._:,u_: __.t._lboarddecoder;

• ,,^
.CC_:ICZ ._:;

o2ZVlU;Device _

,TTTTZZTTTI_ZTTTTZZ_T_T_ZTTzTZITTT_WW_*_Z**_ZTi**i*WWf_i*WitZTTT*iW_*I/

/, 'I

/T iIS "" . _...../ "" "_=mce.=_r=,snu.t=rboarddecoderpal '/

/, _.:..boardis %hesameas in theAPLcameras. '/

/, *1
/'T t/

II I/

/* Revisionhiszory: *I
!, */

/, Rev.01 41!2/9i '/

/, *!

!T X/

/" TargetDevice: 22v!0 _!
/* 't

/* inputs*I
Pin i : el5; /' 6811address15

_in 2 : el4; l* 681!address14
±n 3 = el3; /* 6811address13

Pin 4 = el2; /* 6811address12
Pin 5 = all; /* 681!addressIi

Pin 6 = el0; /* 681!addressI0

Pin 7 = a09; /, 68!iaddress09
Pin 8 : a08; /* 6811address08

Pin 9 = d7; /* 6811address/data07
PinI0 = d6; /* 681iaddress/data06

Pin!i = d5; /* 68!Iaddress/data05

Pin!3 = d4; /_ 6811address/data04

Pin14 = d3; /* 6811address/data03

Pini5 = d2; /*6811address/data03

Pin!6 = dl; /,6811address/data02
Pin!7 = dO; /*6811address/data01

PinIS = !we; /* sysZemwritestrobe

Pin19 = as; /" 6_iiaddressstrobe

notused

notused

notused
notused

notused

notused

notused
notused

notused

*/

*i

'i
't
*t
,I
*/
*/

*t
"i
't
*t
*t
*/
*!

*!
*!

/*0U[pUtS*/
Pin20 = !write;

Pin2! = !dac_se!;
Pin22 : !chanA;

Pin23= [range;

I* 'writestrobeforthisboard */
I* decchipselect *I
i*deccham_elselectA */

/"rangelatchchipselect */

!* addriszheupperaddressinputsas an eightbitword*1
.==_w addr: iai5..a08_;

/'thetemperatureDACneedsthreesignals:a writepulse, *t
' se_ec_,anda channelselect. */

,":ke*_itepulsewillhe generateddirecdyfromthewe inDuo*/

write= we;

/* the DAC will be locatedat address$C200to $ C2FF "/

se! = addr:iC200..C2FF6;

channelselectwill be based directlyon addressline 3 */

chanA : !a08;

/* the rangeselectlatch,used for settingthe tamp sense range*/
/* will be locatedat address$C300 to $C3FF.It iswrite only. */

range = addr:iC300..C3FFE& write ;

3.6 Controller Module Motherboard

The controller card, sequencer card, and temperature/shutter
control card are connected via a simple motherboard. The
motherboard has four slots. Of these, one is unused and available for

future expansion.

Each slot on the motherboard contains a 96 pin female DIN
connector. The first three slots on the motherboard are bussed

together on a one to one basis. The fourth slot, which the
temperature/shutter control card must occupy, has a different
pinout.

Power for the three cards comes through the motherboard. It is
connected from the DB15 connector labeled 'POWER' on the outside of
the controller module chassis to the P1 connector on the

motherboard. The connector is just a set of pads on the circuit card

and the wires supplying the power are soldered directly into the
holes in the card. The pinout of this connector is shown below.

Motherboard Power Connector Pinout:

pin function

1 ground
2 +5v
3 -15V
4 +15V

5 analog ground
6 +28V

3-52

3.6.1 Controller Motherboard Schematic

3-53

0
I

Zl:_ _n m _ O _OIG_ ' Z'Z

mi

, I

, L, iV'v v v V, v v'VV_ _ v VV'_ v _V_ V _V_ v _V_

I

_JILI

,

I

v

i

/

II

t_

X

Z

÷

r • , ,

LvvJ,,

_ ! i _. _.

v v v _ vv_ v _Vv_v v_v _V_ V

__1OlOlOlo.I. _ ___5
///£ J,L ,LL_ 0

/

Im

_X

Z

=i
i I

Ii

Z

aatasaa_o_ _

1
1 ,

__i_ ,,

v v _ v Vv

\

a

o

O4

8Sooco

i

°.

/
• • • , " " • • • • " " " • --" " r"

8G'885_5555_555_8co o8,_
i X

,

• J,, --

rr -,,r" "rr

88°Si6w . ,.8_ ,,

"-" "i"['*-

I

i

I

, i !
i

_I___1_"_i_==_I

. !-f

i

. • •

:u 888_
uJ i.u w u. _ .u

i

.-7 I

/

II.

_X

'Z

/

_M
o,)
X

Z

/

o ooo!8S ,,, _.

598 o
X

_ '

_, j i J L,, I
-'L

/

u-

X

Z

/
, i ; I

N

IL

X

z_

d

en

LLI :_

O_ o "

0_, < o
Z_ 0
7..i m
0oi rr "='

°
w _ _8

z, -<

< <
1'
!
I
I

8
LU

---o
,,J
O..,

>.:

._i ,,, '"

0
w

¢'a,

o,9.
.I,,.

LU

I,,I,I

-,I

LLI

S
z

tm

o

rn

<

{,3

r'n

<

r f

0 m

f I f I

• 0 •

" _ =+ _ Z

cl.

o ZZ

I, _ (J :-)

0

-]1,

jf
.t4_

o_
(.3

_IC >
_o (D
o

nt _

It

I

÷

'0

..d(._ _-

(,3 _

II
4..1_

4,

u.."

,, _C

LLI _

IJJ --

a
,< ,<

-I>

c-,_l
ILl
r_

• __..
o.,
o.

r'..

ILl r._

LI,.I

.,,.,I

iJJ

z

a

r..3

r1"1

<

3.6.2 Controller Motherboard PCB Artwork

3-57

@

@

in

in

tn

ed

so_tmu0tcqci Jo uo

$31[X)'IGNHO-_U. Q=JON'

m
a.

.. a I'+'-C' o

• Q.

NOV

QQO
ooo
ooo
ooo
000
ooo
o00
ooo
ooo
0o0
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
oo0
ooo
oo0
ooo
ooo
0oo
ooo
ooo

aua
ooo
ooo
ooo
000
ooo
000
ooo
ooo
oo0
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
oo0
ooo
ooo
ooo
ooo
ooo

aaa
ooo
ooo
ooo
000
ooo
000
ooo
ooo
oo0
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
o0o
ooo
ooo
oo0
ooo

_! 000

u.
LU
n"

0 0 0 0 0 0 0 0 0

 °00

oo
oo

[] o

Clad
000
000
000
000
000
000
000
000
000
000

0

GO0

0,00
000
(100
QO0
GO0
Q_O0
(100
(:100
(100

0_00

000
GO0
000

,_oo
000

=ooo

I

a ° ao_' aa_'

o o

[3 []

131'!13
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOC_i
OOO
OOOOOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO

--0OO--
OOO
OOO

ODO
oQo
OQO
0_0OQO
OQO
OQO
0_0OQO
OQO
OQO
OQO
000
000
000
000
000
000
000
000
OQO
OGO
OQO
OGO
OQO
OQO

°°°
q)J3_O
, _AO OD O
, _,0_0 OD 0
q bAO O,10 O

_AO OD 0
, _AO O.O O
, _AO OD 0
, b.AO 0_0 0

¢bJ_O OD:¢_Q,O OJ3

OAO ODO000 O0
000 000
000 000
000 000
000 000
000 000
000 000
000 000
OAO O,1130
OAO ODO
0.(3,0 O.OO
OD.O ODO

OD, O ODO
OJaO ODO

OQO OD.O ODO
OQO 0.10.0 OJO0

0.0 OJ_O 0.00
GO OD.O ODO

I ao oJao ODO

o_o o.o_o o_o o

o o ooy ooy

_ODOOD aO0 DDO

oa
mambo

oo
ma o

OOQ DQQ _OD QQQ

000 00_ OOD 000
000 OOQ 0 OD 000
000 OOQ 000 000

• nrm 00_ OOD 000
000 00_ OOD 000
000 OOQ OOD 000

oo oo oo_ ooo
oo oo oo_ ooo
0o oo ooo ooo

0 0 OOQ OOD 000
000 000 000 000
000 000 000 000
000 000 000 000
000 000 000 000
000 000 000 000
000 000 000 000
000 000 000 000
000 000 000 000
000 000 000 000
000 000 000 000

IOOO _oo /--ooo 1--ooo
IOOO IlmOO e" ooo ! ooo
IOOO ILOOO I tooo I rooo
ILOOO IIII _oo I I ooo I I ooo
IOOO I! ooo I_'OOO I1_-ooo
Iooo I_OO Ii ooo II ooo
Iooo IIm_oo IIt °oo lit °oo
IOOO I ooo IIIOOO III ooo
IOOO II ooo IIIOOO III ooo
IOOO I ooo IIIOOO III ooo

oo
a a a a a a a a a aaa

o n
oo

o0o

oo
ooo

o o

3.7 Fiber Optic Interface
There is a small circuit board inside the controller module that

is not connected to the motherboard. This circuit board holds the

fiber optic driver receiver pair that may be used to connect the
camera to the VMEbus interface. It also holds the connections for the

RS422 data transmissions as well as an integrated circuit, a 74HC244,

and jumpers which allow the user to select either RS422 or fiber

optic communications.
Connector P1 is used to connect the fiber optic interface to the

controller card. A 10 wire IDC ribbon cable is used. It connects from

this point to P2 on the controller card.
P3 and P9 are the fiber optic components themselves.
U3, the 74HC241, is used to select between the two

communications channels. Jumpers J1 and J2 are used to make the
selection.

3-63

3.?.1 Fiber Optic Interface Schematic Diagram

3-64

a

£ 8 oL._-._...=...-_;0
0""

o

o o

0 : :

OI

0 ¢/_'

E

z

E

0

m

3.7.2 Fiber Optic Interface PCB Artwork

3-66

X

x

XXXXX
XXXXX

>" X X >"
X

XX
X X X +'I"

+JrX X X X
X X X X ++
X X X X X +÷
X X

iL o@
]

Z
LLI
LU
n-
O
¢/)
v
-J
1

(/)

|r ooooo,
/_ ;- z

o!-- °oo
o o
o o .5

0 o o
,-, o oo o onoO@...

o o ol Io I'_WJ/_ -"
oio o o ol Io1-1-/_':'

I°lUz 8 _ r,.-_o _

_J O0"IONHO3.L03::_NVAOV

0 0 @

I-
z
ILl
Z
0
r_

0
0

D
o o.o,13 o

N°°l°ll-

i@ _- @
O

e

oo@

e e

0
--I

113

[]

4. Clock/Analog Modules

4.1 Module Overview

The clock/analog modules contain the circuitry required to
measure the charge of the pixels on the CCD imager. They contain

digital to analog converters to generate the CCD clock rail potentials
and CCD reference voltages. They contain the switches used to clock
the CCD, the latches that control those switches, and the buffers that

drive the CCD. They also contain the circuitry used to process and
digitize the CCD video signal and to send that data to the VMEbus
interface cards. The clock/analog modules' temperatures are

regulated to assure that temperature related drift in the video
processing circuitry does not interfere with the accuracy of the CCD
data.

One clock/analog module (CAM) consists of two circuit boards

in a temperature regulated enclosure. The clock board contains the
digital circuits used to communicate with the controller and CCD clock
timing, voltage and drive circuitry. The analog board consists of the
analog processor, analog to digital converter (ADC), and data

transmission logic. These boards are each discussed in turn below.

4.2 Connectors and Ptnouts

There are several connectors on the outside of the CAM chassis.

Two connectors serve as input and output for the control signals

from the sequencer.
One connector provides the camera data and clock signals on a

pair of RS422 serial lines. Additionally, there are two ST-type fiber
optic connectors providing the clock and data signals in an optical
form. The pinout of the camera data connector follows.

Camera Data Connector : DB9

1 data clock +
2 data clock -

3 data -
4 data +

5 ground
6 unused
7 unused
8 unused

9 unused

4-1

The connector labeled "power" is used to provide the DC
voltages necessary to operate the controller electronics. The power is
normally provided by connecting this connector to the power supply
module with the cables provided. These cables are approximately 3
meters in length. The power supply voltages provided must be
regulated, as no regulation takes place inside the module.

CAM Power Connector : DB15M

pin voltage pin voltage

1 -15V 9 GND
2 -15V 10 GND

3 +5V 11 GND
4 +5V 12 GND

5 + 15V 13 GND
6 +15V 14 GND

7 +28V 15 GND
8 +28V

The CAMs are connected to the controller module in a 'daisy-
chain' fashion in which the control signals pass through one board to
the next. A cable is connected from the 'control source' connector on

the controller module to the 'control in' connector on one of the
CAMs. Another cable is then routed from the 'control out' connector

on that CAM to the 'control in' connector on the next. The cables used

are of the one to one type. The pinout of the connectors on the CAMs
is the same as on the controller module.

Camera Control Connector Pinout : DB37

pin function pin function
1 WR+ 17 DO+
2 WR- 18 D0-
3 A0+ 19 DI+
4 A0- 20 D1-
5 AI+ 21 D2+
6 A1- 22 D2-
7 A2+ 23 D3+
8 A2- 24 D3-
9 A3+ 25 D4+
10 A3- 26 D4-

pin function
33 unused
34 unused
35 unused
36 unused
37 unused

4-2

11 A4+ 27 D5+

12 A4- 28 D5-

13 A5+ 29 D6+

14 A5- 30 D6-

15 extra+ 31 D7+

16 extra- 32 D 7-

4.3 Clock Generator Card

The clock generator card consists of all the analog circuitry

associated with the production of the CCD clock and reference signals

for one CCD output port. It also contains enough digital circuitry to

interface to the camera control module. The clock generator is the

only interface between the camera control module and the CAM.
The 'control in' and 'control out' connectors on the CAM chassis

are connectors P1 and P2 on the clock generator card. The 'control in'

connector is tied to the 'control source' connector on the camera

control module by a DB37 cable with one to one wiring. Another

cable may be used to connect this CAM with another. As many as

eight uniquely addressable CAMs may be daisy chained in this way.

Termination resistor packages RP1 to RP6 are installed in the last

module in the chain.

The address map of the clock generator modules contains 30

write-only byte wide registers that are addressed by the controller.

These registers are used to direct all operations of both the clock and

analog boards. Twenty-four registers are used to set CCD clock rail

and operating voltages. The remaining registers are used to operate

the analog processor and ADC, and operate switches used to generate

CCD register clocks. The address map of the clock generator card is

shown below.

AIS 1 Clock Generator Address Map

CAM ID.

Voltage DACs
Serial Clock Control

Parallel Clock Control

Other Clock Control

Analog Processor Control

CAM Configuration

$FFO0

$FFO8 -> $FFIF

$FF20

$FF24

$FF28

$FF2C

$FF30

4.3.1 Sequencer Data Interface

4-3

The differentially driven DSP address and data signals from the
controller module are received by a set of 41LF type receivers from
AT&T, U1 to U4. All the devices on the clock generator card that the
DSP may control appear as memory locations in the DSP's 'y data'
memory space. The various clock generator cards in the system share
common address locations, but may be enabled or disabled

selectively by the DSP program. At address location $F000,
commonly available on all boards at all times, is the CAM ID latch,
used by the DSP program to determine which CAMs will receive the
following control sequences. The DSP writes a value to this latch. Each
bit of the output is tied to on pin on one side of eight position jumper
block J 1. The other pins on the other side of J1 are all connected to
the enable line referred to as ID* on the schematics. If this line is

low, then the address decoders will respond to write accesses from
the DSP. Each CAM is configured with one jumper in place on J1. The

position of this jumper determines which 'ID' bit the CAM will
respond to. In this way, as many as eight uniquely addressable CAMs
may coexist in the system, CAMs may share IDs if desired, and the
DSP may access any subset of the addressable CAMs simultaneously,

4.3.2 CAM Configuration Latch

The clock generator card contains one latch referred to as the
CAM configuration latch. This latch is used to enable and disable

various parts of the clock generator for diagnostic and CCD test
purposes. The latch, U10, a 74F273 type, has 5 outputs which are
used. Bit 0 is used to enable and disable the CCD docks as discussed

below in section 4.3.4. This bit has an active high sense. The other

bits are active low. Bit 1 may be used to disable the analog control
signals, bit 2 may be used to disable the parallel clocks (useful when
testing CCD devices for charge injection through these clocks), bit 3
enables the serial clock control latch, also useful for testing, and bit 4
controls the output of U14, which controls a variety of CCD signals,
including the transfer gate, CCD reset gate, and summing well.

The default condition for the CAM configuration latch is
determined by U5, a power monitor IC which resets this latch at
power up. The CCD control latch outputs are then all enabled, but the
CCD clocks are disconnected from the analog card.

4.3.3 CCD Voltage Digital to Analog Converters

All the DC voltages needed, both as clock rail settings and DC
references, are generated on the clock module for the CCD or CCD

output port that it is connected to. Separate clock voltages and

4-4

control signals are generated for the CCD parallel register, serial
register, parallel transfer gate, summing well, and reset gate. Two
spare clock lines are available for future use. The parallel and serial
clocks may be set to any of three voltages: low, midrange, or high.
There are four serial and four parallel register clock lines that may

be programmed with independent timing, but common clock voltage
rafts.

Eighteen programmable voltages are available as clock rail
voltages for driving the CCD clocks. Other programmable voltages are
used to control the operating point of the output amplifier and other
static levels such as substrate and last or output gate potential. The

voltages are established by twenty-four eight bit DACs programmed
by the DSP. Each clock rail may be programmed in 256 equal
increments over the range of voltages listed in Table 4.1.

TABLE 4.1

Programmable Clock Rafts and Voltage Ranges

address _lock signal range (volts)

$FF08 parallel low -12.5 +12.5
$FF09 parallel midrange -12.5 +12.5
SFFOa parallel high -12.5 +12.5
$FFOb serial low -12.5 +12.5

$FFOc serial midrange -12.5 +12.5
$FFOd serial high -12.5 +12.5
$FFOe transfer gate low -12.5 +12.5
$FFOf transfer gate high -12.5 +12.5
$FFIO summing well low -12.5 +12.5
$FFll summing well high -12.5 +12.5
$FF12 substrate -3.0 +3.0
$FF13 last gate -5.0 +5.0

$FF14 reset gate low 0 +15.0
$FF15 reset gate high 0 +15.0
$FF16 reset drain +5.0 +20.0

$FF17 output drain +5.0 +25.0
$FF18 spare gate 1 low -12.5 +12.5
$FF19 spare gate 1 high -12.5 +12.5
$FFla spare gate 2 low -12.5 +12.5
$FFlb spare gate 2 high -12.5 +12.5

current source -12.5 +12.5

spare i -12.5 +12.5

4-5

The voltages from the DACs are then filtered and buffered
using simple operational amplifier based filter circuits. These circuits,
constructed around U16, U17, U21, U22, and U23, provide gain and
offset correction to transform the voltages from the 0 to 5 volt range
of the DACs to the ranges listed above in Table x. All the DC voltages
thus produced are tied to test points located in one corner of the
printed circuit board. The voltages used as CCD clock rail potentials
are then tied to the inputs of a set of analog switches used to toggle
the CCD clock line from one potential to the other.

4.3.4 CCD Clock Switching

The CCD clock switches are controlled by the sequencer writing

eight bit data values in to the CCD control latches U12, U13, and U14,
74F574 type octal flip flops. U12 controls the CCD parallel clocks, U13
controls the CCD serial clocks, and U14 controls the other clocked

signals, including the CCD reset gate, summing well, and transfer gate.
Since the parallel and serial docks are tri-level, each CCD parallel and
serial clock is controlled by two bits in the appropriate register. The
reset gate, summing well, transfer gate and other signal are
controlled by only one bit since they have only two possible settings.

The CCD parallel clocks are switched by U27, U28, U29, and
U30, DG413 type analog switches from Intersil. The resulting clock
signals then pass through U31, an HI-201HS type analog switch, and
to P4 the connector that brings the CCD clocks to the buffers and
resistor networks on the analog card.

The CCD serial clocks are switched by U34, U35, U36, and U37,
HI-201HS type analog switches. These switches are chosen for their
speed. The outputs of these switches then pass through U38, also an
HI-201HS type switch, then to the P4 connector.

The switches U31 and U38 mentioned above, as well as U42 for

the reset and summing well potentials, U39 for the transfer gate, and
U43 and U44 for various other CCD signals, are used to allow the

camera controller to effectively disconnect the CCD signals generated
on the clock card from the analog card. This allows the control

program to essentially turn the CCD off. These switches are controlled
by bit 0 in the CAM configuration latch. At power-up reset, a DS1231
power monitor circuit resets the CAM configuration latch, assuring
that the CCD docks are initially disconnected from the analog card.

P4 : CCD clock connector

2 parallel clock 1 28 unused

4-6

4 parallel clock 2 30

6 parallel clock 3 32

8 parallel clock 4 34

10 transfer gate 36
12 serial clock 1 38

14 serial clock 2 40

16 serial clock 3 42

18 serial clock 4 44

20 extra clock 4 46

22 extra clock 3 48

24 extra clock 2 50

26 extra clock 1

unused

CCD substrate (unused)

summing well clock

reset gate clock

summing well low

summing well high

reset gate low (unused)

reset gate high

VLG CCD last gate

VOD CCD output drain
VRD CCD reset drain

All other pins on the P4 connector are tied to ground.

4.3.5 Analog Processor Control

The CCD video processing circuitry, located on the analog card,

must be operated synchronously with the CCD clock timing. The

various signals that control the CCD signal processing and digitization

are generated on the clock card. Eight bits of digital control are

provided by Ull, the analog control latch, a 74F574 type octal flip

flop.

Of the eight signals provided, six are currently used. They are

covered in more detail in the description of the analog card itself. On

the clock card, they are simply taken from the control latch and tied
to the connector labeled P3. Connector P3 is also where the clock card

power is provided. The CAM power is connected to P1 on the analog

card, and connected to the clock card by a ribbon cable at P3. The

pinout for this connector is shown below.

P3 : Power/Analog Connector

1,2,3,4

5,6,7,8

9,10,11,1

13,14,15,

+28 Volts

+ 15 Volts

2 +5 Volts

16 - 15 Volts

18, 20, 22, 24 unused

26 RIN

28 DCR

integrator reset

DC Restore

4-7

30
32
34
36
38
4O

SA1
SA2
CTC
SEN*
extra
LPIX

sample 1
sample 2
command to convert
data send enable

'last pixel' (no longer used)

4-8

4.3.6 Clock Generator Card Schematic

4°9

.4

i

qP

an

m

| I , " I

,r=r f=f:/:I:r

. =! itil_l_ol, I

]
:[:I:/I

=_,1_l-"'-:"-:"-:"=_,l

ttttlt11-,':E _|
@ o + , 4, o 4. i

. ; o oo= :=...°°*.:.; ..,,

!!!!!!!!!!!!!!!!!!!!!!!!tt'!"))!!.._.. ..
:::::::::::::::::::::::::::::::::::::

, ÷ , + , ÷ , + , + , + , + , +_ , .,. , ÷ , ,, , + , + , ÷ , +

::::::::::::::::::::::::::::::::::::

,IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

,n s.

e

I.-I ,,I

!!i ,ii
x_

E c_

° l:
m

0

qP

Q

4

...J

1!

u

M

u

a

_|,

I,

_-I I. :

J!l! !! t ".-_.

[":1
+

I

M

T-.._

(
I¢I

II

llilllll'"......... .I_I:I_"

)

Do,,1

|

,,=,3

"r

i " I : I

W

M

IIq

Im

o

.-".

÷

_IQ _ oh

w r i,_

1

-NI
too,

I

2o

X .,-

!

_D

--t_--+

a

+

m

Ik e_h
I_ ewD

.. ...-f
q' _,i

°I.'-"-/_;.'X
I :1_

,,M:
_0oq
o_a

o
!

u_q

I

-_-+

C_ Q

a N

0 m
0_o

H|.

• h

"41

M '

I

M

elD

a

e_D

e.
IW
N

Ei

r4

r..

GO

a_

M

.Bit,
r- *,

h

wo,

N

..**:

D.

I.I
I U

o
I

_ Nh
tD
U_

_M
r-m

_D

aal

I

Iq mD

,Ba
_M
E'W

a _

I

mD
U,-O

_m
_m

mQ E _h
..t IE m m _D
+014" U_.

I

I

o*i

_ h

r,
I

u_

I

t_D

_h

m

r*
m

i!: a
_ • 0,e_

L_ h

lt'l

ll*

r,.

m

._,.:

•..:,_,.--:.
_1
U_ I

i • i

ak I
ND I

i • i

....=4K.=.-=O

mile I

i i

r,,i i

u_ i
_ • |

..-.--,-_

+

.,=

, m
i ob

i u.,i
, m •

all
i eeD
: u,,,e

• •

win
eeD

F"b
_D
U,,,I

--t_ -+

i

_ o

M

0. o ¢" ,,.,

°i
iQI • ib

--='41==--4

-.., ..I.. ---'o it

""' ! "¢
ia • i

ii
!

, , :, _:, _._ _ ' _
-I .'I." .,., .'Ioi .'I-I .'I-I -14 :I-'I-'I-*I -'I-I

1:=:===:= :=:: :===v' l :===:="1o
m

i.._, - '-I'--' "I +I

-/ _1

i=I

,if ,is

_I{'- .i,_i,i i

U,.G U,.I I
il • il • I

• !

m. i. m

-._ _ --.-41.-,.4• I

o,.l u..¢ I
I • i . |

i |

u_ u_ I
I • i • |

+ i

m

M ,.
IM al

I il°
I__-o

N _

li _°
4 _H

i

m

"l"l"1]',_
I

u

." :14

=I_ _ _ _ _._.

• I .4

•.I-I:t:1 Sq.IJ :-I

]
e

,'Sl

q

II1

IR

_O

M 14

Q a

i
+ o

.'1-I

M N IIIJ

"1"i!'! "1.-i_.
I

la

=. ". ÷,
-14:1"-I .'1.t .1_1:14

14
I

I

II

i,i i-i I-e
I_ + o

mo
Dill

Q
O _ Ill

D

!

-I o
I pl

:ITI °"

II I ii I
II el

I°1
. o

I

_F -+

I,,,
11

• ii

H ,

_h

=

II °

----tl--

U_

III °

o

Ill °

m •

---t!---

!

_ °

II •

Ill •

u_

o

u.l
• ,

--/_--

---tb---

+

4

I1

"4

N

ql

+

u
N

+

m
N

a.

+

+

--IF-
+

u
N

--t_--
+

w D
u
N_

I;
+

_0

u I
N I

--._1.--._

---!t--
+

u
N

+

|

o_

r-
in

I=I .

H ml

_h
,

o

4

!I,
0 _,

U

M

4.3.7 Clock Generator Card PCB Artwork

4-19

• •

e

Z
ILl
L_
n-
O
O0

_J

Or)

CL
0
I--

g

_l _ _ _ I_ w"

-_ _ ;i _ Q

£I

I I (j IIIIII _"I
I@ _IIIIII

9_N

V0£08 01108 VL£0E V'_'k0E V_O8

_ C_ CD C_

Ii; _ Ii_ I=._
CD C_ CZ) C_

e_oa e.'_oe e_,oe a_,oa
vszoaszoe _:oe v.,o. w_oe

86138 89138 8 H, O8 8£$,01

V_;08 g£;38 VI£O8 V0tO8 Y_£01t

CD(_) C_ CD C_

II; > I_1> .,. II;>
C_ CZ) C_ C_

8g_08 8f£08 80t,08 89£08

Y/._O_ /._08 V_'£O_ V6£08 " YL£Oe

CDC_ C_ C_ C_

8L108 Et,£OE 86£08 8 L£08

i0
iO
_0

0_0_0_0 0_0_0_0 0_0_0_0
i_' I iT" I i_']

RP9

I)

RPIO

Ii_,,

I

I

.I

I

"D
4_

i0
_0
_0

RP11

.O_O_O_OO_O_O_O_O _ RP8
(

g_O8

c_
I= =I I "'C (_,,,

' I'

_ _ I_'

ii
If

!OI

I

i!-:

I

; I_ '

_ I_

' 1

I I,P

t

I
_0

_0

I

0

©

0

• •

i,i

m

O

0000 0000 00000 OOOO000

omloo

Dooooooq

O0000 OOOO0 DOO0000 OOOOOO0

gO0000 OOOO0 O0000

• go go • • O0 O0 •

• • • • • • • • D •

• • • • • • m • • •

O0 O0 •

• •

• •

Inoeoooo moooooo oooooo'

• oomoo • • oomoo • • oomoo •

• • • • • • • • • • • • • • •

• • • • • • • • • • •

• mn nn • nu mu • • mn mn •

• O0 O0 • • OO O0 • • gO O0 •

• • • • • • • • • • • •

• • • • • • • • • • • •

mooooeo I_:cm:_ mmwoooe

• oomoo Ol • oomoo • • oomoo •

• • • • • • • • • • • • • •
• • • • • • • • • • •

• un mn • • um um

OO00000OOO

OOO000000000

oooooooooon

OOO000000000

OOOOOOOOOO

OOOOOOOOOO0

OOOOOOO00OO0 OO000000OO0
O00OO00000OO0

OOO00000000000

OOOOOOO000OOOOO OOOO0000000

OOOOOOO00000OOO0

OOOOOOOOOOOOOOOO00000OO000000000

OOOOO000000000OOOOOOOOOOOOOOOOO0

OOOOOOOOOOOOOOOOOOOOOOO000000000

OO00OOOOOOOOOO00000OOOOO00000000
OOOOOOOOOOOOOO000OOOO00000000000
OOOOOOOOOOOOO000000000000OOOOOO0

OO00OOOOOOOOOO00OOOOOO0000OOOOO0
OOO00OOOO000OOOOOOOOOO00OOOOOOO0

OOOOOOOOOOOOOOOOOOOOOO000OOO0000

OOOOOOOOOOOOOOO000OOOOOOOO000000
OO00000000OOOOOOOOOOOOO000000000

OOOOOOOOO00OOOOOOOOOOOO000OOOOO0

• nm nn •

O noooooooooooooooooo OOOOOOOOOOOOOOOOOO0

• •
O
O

OOOOOO0

O
O0

O0

OO

O0

O0
O0
oo

O0

O0

OO
OO

OO

O0
OO

O0

OO

OO

oo

O0

O0
gO

OO

O0
OO

omm

O
O00000

OOOOO0

O00000

O00000

OO000000O

OOOO00000

mooooooooo

ooooooo

ooooooooo

0
OOOOO0000

OO0000OO0

NOOOOO00OO

O000OO00

OOO000OO

mooooooooo

ooooooooo

moooo oooooo

OO00000O
O00000 OO0000000

IO0000OOO0

OOOO000 OOOOO00

_OOOO000 _OOO00OO

O000OO00 OOOOOOO0

noooooo nooooooo

ooooooo ooooooo

mooooooo mooooooo

oooooooo oooooooo

mooooooo mooooooo

OO00000000000000001

OOOOO0000000000000 O
O O

0

o

c_
_z

L_

• •

n,n
Z

a
Z

0

o o

• •

• •

• •

• •

O0::OOO

• •

"_OOOOO
OOO0

oo
• OO0:;
,:OC:OO0

OOOOO0

:_O. ::O. .. :;O +O. -
OOOOOOOO OO00000O

OOO0::OO0 OOOO:;OOO
::O ::O

• ::O ::O , :;O
OO0"OO0'O0 OOOOOO00

OOOOC:OO0 OOOO:;OO0

:_O ::O ::O
OOOOOO00 gO000000

OOO0:_OOO OOO0:_OO0
::O ::O

.... _O _

:':O
OOOOOOO0

OOOO:;OOO

:,'O

• •

• :,'O
ooo'ooooo

:;0
OOOO0000

oo6o::ooo
C:O

OOOOOOO0

OOOO::OOO
::O

OOOOO600

• ::O
OOOOOOOO

OOOO:;O00
::0 •

• ::O:;O :_0 ::O :;O
OOOOOOO0 OOOOOOO0 OOOOOOO0 O0000000

O000:,_O0::OOOO::OO0 OOO0::OO0
:;O ::O

• O0 O0 • • O0 O0 • • O0 O0 •

• OOOO0 • • OOOO0 • O 0 OOOO0 •
OOOOOOOO O000OOO OOOOOOO

• •

OOOOOO0 OOOOOO0 OOOOOO0
• OOOO0 • • OOOOO • • OOOOO •

• • • • • • • • • • • •

• go go • • O:: ::O • • go go •

::OOOOOOO0::

OOOOOO000O

OOO000000:;

oooooo::
eoooeee

O00000:;

OOO0000

O00000::

::OO000000::

O000OO000O

O00000000C_

• O0 O0 • • O0 O0 •

:_ • • _ c_ • •
• • :: • • • • :_ •

• OOOO0 • • O000O •
OOOOOO0 OO000OO

OOOOOO0 OOOOOO0
• OOOOO • • OOOOO •

• • • • • • •

• O0 O0 •

OOO0 OOO0

• O0 O0 • o

• • • :: • •
• OOOO0 •

OOOOOO0

OOOOOO0
• OOOO0 •

• • • • •

OOOO OOO0

O:; :;0

:: OOO0
• _o •

:_'OOOOOO00OO0v

gig:: ::O •

O:; OOOOOOOOOOO0

OOOOOOOOO0
OOOOOOOOOOO
OOOOOOOOOOOO ::OOOOOOOOOOO
OOOOOOOOOOOO0 •
OOOOOOOOOOOOOO :;
OOOOOOOOOOOOOO0 OOOOOOOOO00O
OOOOOOOOOOOOO000
OOOOOOOOO00000000000000000000000
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO00000OOOOOOOOO0
OOOOOOOOOOOOOOOOOOOO000000000000
OOOOOOOOOO00000OOOOOOOOOOOOOOOO0
OOOOOOOOOOOOOOOOOOO0000000000000
OOOOOOOOOOOOOOOOOO00OOO000000000
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOO000000000000000000000OOOOOO0
OOOOOOOOOOOOOOOOOOOOOOOOOOOOO000
OOOOOOOOOOOOOO0000000000OOO000OO

::O000060::::

O060OOOOOO •
• •

OOOOO0000:; _:OO000000::

OOO0000000 O000000000

OOOOOOOO0:: O00000000:_

O0000000 O0000000 OOO0

O nooooooooooooooooooooooooooooooooo:_c:o

• O0 O0 • • O0 O0 •
°O OOOOOO0::

• OOOOOO00
::OOOOOOOOOO0 • OOOOOO00

.,

"" OOOOOOO00000 OOOO000000

:'-OOOOOOOO:: O000000:;

OOO0:;O00 OOOO':OO0

O0000OO:: O00000O:: O::

OOOO:;OO0 O000::O00 O:;
O::

000 0:,"

°oooooo6:: OO00600:; o::
O::

0::

OOOOOOO0 O0000000 • O"_• , OC_

OOOOOOOO OOOOOO00 O':

;_ O0
OOOOOOOO OOOOOOOO • O0

O0
OOOOOOO0 gO000000 C_ O0

• O0
O0

OOOOOOOO O0000000 :_ O0

• O0

OOOOOOOOOOOOOOOOOOH
OC_:_OOOOOOO0000000O

%

,_,+.;

_

O

..,,i

m

%,,

n,n

-.,I
0

n omm •
mn:

mini m •

• • •

• • •

o. o:

mmO •
•o: :
mOoo o0omo• •

• •

• •

• •

• •

NONOO0

• •

OiOiln
OOO0

o•
•mooo

ommmooo

EOOIII

omom,
oO oo ooo'oo obooooo,

 o o'ooo
J om om

• on on
OO_O'OOOO

oooo'o oo ' Joo6oo
• J

,° _,_ O _

n_o_o'o'o'o_e • o,o,o • • • •
'ON on , :"

• •

• o_n • .
oo o'o oo'o • o°'o'_l • • • •

m'ooooooo moo_0oo_ uooooooo nooooooo
OI ON OI ON

oN oN oN •

oooooooo ooo00ooo

• O0 O0 •

• • • •
• • • • •
• mmmmm •

OOOOOOOO

moooooo
• oonoo •

• • • • •
• • • •

• II II •

nooooooo
on

om om
OOOOO000

Ooo

NOOOO000
on

on
OOOO0000

mooooooo
on

• O0 O0 •

• • • •
• • • • •
• mmmmm •

OOOOO00

moooooo
• oonoo •

• • • • •
• • • •

• mm am •

mooooooo
on

• on
OOOOOO00

mooooooo
om •

om on °om
oooooooo oooooooo 0ooooooo

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

.oo
oo
oo
oo
oo
oo
oo
ON

mooooooo
on

• O0 O0 •

• • • •
• • • • •
o m mmmmm •

OOOOOO0

moooooo
• oomoo •

• • • • •
• • • •

• mm am •

mooooooo mooooooo
oOm on

OOOOOOO

• U meooooo

• • OOO00OO • co"

6

moooooo

O000000

moooooo

mooooooooo mooooooooo

OOOOOOOOOO OOOOOOOOO0

mooooooooo mooooooooo

• OO OO • • OO OO •

• • • • • • • •
• • • • • • • • • •
• mmmmm • • mmmmm •

00G_60_ _OGOOaQ

moooooo moooooo
• oonoo • • oomoo •

• • • • • • •
• • • • • •

• um mm • •

OOO0 OOO0

nooo nooo
no on

• OOOO•
mooo om

IO

OOOOOOOOOO
OOOOOOOOOO0
OOOOOOOOOOOO
OOOOOgOOOOOOO
OOOOOOOO
OOOOOOOO
OOOOOOOO
OOOOOOOO
OOOOOOOO
OOOOOOOO
OOOOOOO0
OOOOOOOO
OOOOOOOO
OOOOOOOO
OOOOOOOO
OOOOOOOO
OOOOOOO0
gig
gig

• OO 00 •

• • • •
• • • • •
• mmmmm •

.0000@_0

• • •
• •

mm mm • • mm
o o

OOOOOOOOOOOm

OOOOOOOOOOO0

O0000OOOOOOB

OOOO000OOOO0

OOOOO0

OOOOOO •
OOOOOOO OOOOOO
OOOOOOO0
OOOOOOOOOOOOOOO
OOOOOOOOOOOOOOO
OOOOOOOOOOOOOOO
OOOOOOOOOOOOOOO
OOOOOOOOOOOOOO0
OOOOOOOOOOOOOOO
OOOOOOOOOOOOOO0
OOOOOOOOOOOOOOO
OOOOOOOOOOOOOOO
OOOOOOOOOOOOOOO

OOOOOM

OOOOO0

OOOOOOOO0
OOOOOOOOO
OOOOOOOOO
OOOOOOOOO •
OOOOOOOOO
O00OOOOOO •
OOOOO0000
OOOOOOOOO •
OOOOOOOOO
ooooooooo •
OOOOOOOO0
OOOOOOOOO •

OOOOOOOOOOOOOOOOOOO0
OOOOOOOOOOOOOOOOOOO0

moooooo
• oomoo •

• • • • •
• • • •

mm •

mOOOOOOOOOOOOOOOOO0
OOOOOOOOOOOOOOOOO0

nooooooooo

0OOOOOO466 •
• •

mooooooooo mooooooooo

ooooooooo6_j-_66ooo06-

NOOOOOOOO0 EOO00OOOOO

OOOOOOOO OOOOOOOO OOOO

mooooooo mooooooo mooo

oooooooo
mooooooo nooooooooo •

oooooooooo oooooooo

mooooooooo mooooooo

oooooooo oooooooo

Booooooo Nooooooo oo

oooooooo oooooooo oo

oO o oooo

°noooooog mooooooo oo
oo

oooooooo oooooooo oo
oo

oonogooooo mooooooo oo

oooooooo oooooooo oo
oo

• oo
mooooooo mooooooo • oo

oo
OOOOOOO0 OOOOOOO0 • O0

• OO
OO

mooooooo nooooooo • oo
• on

0OOOOOOOOOOOOOOOOOH
OOOOOOOOOOOOOOOO00

L_

0
_Q
.J
0

e

0

• •

n,n

i

O

00

O0
O0
00

OO

O0
O0

O

I0000000 00000 OOOOO000

OOOOO 00
iO

gO
O0

OO
00

00
00

OO
O0

IO

O0
00

OO
O n

moommu
IO00000O OOOO0 OOOOOO0 iOOOO000

O0000OO

IO_OOO0

• O0 OO • • O0 OO • • O0 O0 •

• • • • • • • • • • • •

• • • • • • • • • • •
immnm • nnunm • unnun
oooooo oooooo oooooo

iooo_oo

OOOO000

BOO00OO

• • • • • • •

• • • • • •

• mu mm •

• • • • • • • •
• • • • • •

II II • • un In •

• O0 O0 • • gO O0 • • O0 OO •

• • • • • • • • • • • •

• • • • • • • • • • • •
illll Innmn inmlu •

OOOOOOO OOOO00

IO00000OOO logo0

OOO00000O O00QO

iOO000000O I0000

I •
OO00000000

OOO000000

OO00OO00OO

O000000O

OO00OOOO

• • • • • • • •
• • • • / •

• um mn • • um nm

OOO00OOOOO00 OOO00000OO O000000

OOOOOOOOO0

O0000000000
O0000OOOOOOO
O0000000OOOOO
OO00OOOOOOOO00

OOOOOOOOOOOO00q

OOOOOOOOOOOOOOOO

OOOOOOOOOOOl
ooooooooo mooooooo

O._O_O0 OOOO0_O"

no)o_ooo mooo_ooo

OOOOOOOO _ OOO_O_0.o__ e___-
e_loooooo, mo--_ 0_ • • •

O000OOO0 IO0000

mooooooo oooooo

oooooooo oooooo

OOOOOO_

mooooo

oooooooo:

O00OOOOOOOOl

OOOO00000000

OO00OOOOOOOO000OOO00000000OOO00O

OOOO000OO0000000000000000000000O

OOOO00OOOOOOO0000000OOOOOOOOOOO0

OOOOOOO00000000000OO00OOOOOOOOO0

OOOOOOOOO00OOOOOO0000OOOO0000000
OOOOOOOOOOO00OOO00000OOOOOOOOOO0

OOOOOOOOOOOO00OO00000000OOOOOOO0

OOOOOOOOOOOOOOOOOO000000OOOO0000

OOOOOOOOOOOO00000000000000000000

OOO000OOOOOOOOO00000000000000OO0

OOOOOOOOOOO000OOOOOOO00OOOOO0000

OOOOOOOOO000000000OO000000000000

|O000000

O00000000NOOOOOOOO__pppppt t_l O gO __oT::::o°o°o°:on O. .

O

O

0

0

l,cA

2';t

..'..

• •

I.JJ

a
m

OOOOOOq

OOOOOOOOOOOOO• • •

OOOOOOOOOOOOOOO •go•o••••••• O•••OOOO •OOOOOOO •
• •go•••••••O••••

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO _ •

• go•o••••••••••••••••••••••••••• _)Q • O•
OOOOOOOOOOOOOOOOO•OOOOOOOOOOOOO0 _' • 00

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO _)01 ooOO

gO••••go••••go•••O•••••••••••••• : OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
)•)OI O•

go•go••••••••••••go••••O•••••••• O•

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO _O _ • • O•

O•OOOOOOOOOOO•OOOOOOOOOOOOOOOOOO _ • 00

OOOOOOOOOOOOOOOOOOOOOO•OOOOOOOO0 r--- ••
• go•••••••••••go•o•••••••••••••• no)o m•

ooooooooooooooooooooooo•oooooooo

*** _ ,go

_- oo.
• • • • • • __ .

o60
. • • • • • =_'" ._
n n • u n n n • m m m m • m u ._-----_ _00

• unman • • nnuuu • • • NNNNN • - j|

*go*o*** OOql ql OO0 OOOOOO0 _ _""

• L _1 °° _99 _0
moooooo m_lao_io • moooooo

• **no. • • oJanoo I • • **moo • o. Do, o. uooooooooo
. . • • • • o, . ,0 • • • • • •

• , nn • n nn| Jnn nn nn un • • ***ooooooo ,ooo***ooo
• minim nul I • • m• •• •

" "" "" " ' / / nooooooooo yooooooooo

I / • F •IPr I "**••••°** I
• 00 .o . * *l' o. I . . .o o. ** ****ooo***-*|

** ., ,./ /•. ** ., _ / • "
• • i l• • • • • • • • I., , ,wm
• mlmmmm I • • mmm•m • l--°°°T°°°L.J m°•°°°°•°°• mmmmm •

, •

m*i•ooe meeeeee • • u! •

,I • m......oomo.• [• •°'':l:m':i..• • • • • .oN,go "" " m_''°ll " II 4_I'i ul"

• " " " " " "/ r • • • " • ""'"'1" ""_'1'1 "1"• • • •

• i• •• • • •li i•l • • Oi •m • I / / I

n .i o. . nooooooj O moooooolq I _o

""" """ I I I .ll---O • OOOOOOOOooolooooooon
rim ieJ••OOO nO•O•• l • •

oi f I /_ • n
moo• moo• oio. morocco• ,•ooze ,ooeoooj,m m• om

,:• • ; • "" , O

i •gO• on

OO0 OOOOOOO0 L I I_ =i "° "'*'i"l_ moooooq_ .
...,.,,. ..,..... .**go**go•0

OOOOOOOOOOO o_oooo•oooon • • • ioooooooooooo

ooooooooooooo n--., •NO_D,,o ooo_-_ •

nLng'P999999********** i i '_°*o*°**o*'P'P'P'P99'Pg,_ O

e

0

a,i

!

C/)

I--
Z

Z
0
(3_

0
0

• • .."

/ • o• o o__%_'o • o OH_%_._• • oooooooo------o*_ooooo I
-- r . 'J J _----"_--4 oJ

_,' , , .--. _ o, /,, t "- " •
o..4 _ n 1--0 "_ " " "0

• -J.--, • I _,7---_ _----T_I. _,J, _,,..---.,_---_,
• _r-" - _. ._ ._-;-o ._;_./o._l..,' 70 ._?o In ::

%1 " _ "---"_ -- / .l]_nlL--_:•
ill • _ _ IO_OOOOOO IiOOOliO IO'l'i lOll IOOOOi00II 00

lit - • /0. .i oi / I "I ill ":
" . • • J ./

m dn9nooo j_-'_m-_ oI • om j om 1 ___________

• "_ ,:----, r-__.o ._...,T..T___o,_.
/ i • _. ; 'J t _:o]

-- -le _ • O OIIIII ioeeeooo mooooi_e IOAtlIol I,IlOlie /----4J t

i • logo _ el ON /el I on _0/ _O

iI - • _ P :OI, --. • .__,... _____---JIr _._:-]
_.. -_I: ._ 0,,000 .._ 0. . -,,_T-_I F-;:I
• _ "- . ;,o,L;;,o o,o;o_J,, oL'_-_-_,o-----o 60

• .'--,...-.,. "........ ,,..... ,,,.._[_, O
-- " L.I" L "'_-_-_ J

J OOOOOOO

O

ItOI on •
I!

OOOOOOOOO0

OO000000000
OOOOOOOOOOO0

O0'OOO00OOOOOO •
OOOOOOOOOO0000 •

OOOOOOOOOOOO000
OO00000000000OO0

OOOOOOOOOO00

OOOOOOOO000000000000000000000000

OOOOOO0000000OOOO0000000OOOOOOO0

OOOO00OOOOO000000000OOOOOOOOOO00
OOOOOOO00OOOOOOOIOOOOOO00000OOO0 •

OOOOOOOOOIIOIOOOOOOOOOOOOOOOOOOO

i OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO •
OOOOOOOOOOOOOOO00OOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOO000000OOOOO000 •
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOIOOOO000000 •

OOOOOOOOOOOOOOOOOO0000000OOOOOO0
OOOOO0000OOOOOOOOOOOOOO00OOOOOOO •

O noooooooooooooooooo O

• "'"TTllT'" OO",,O.?T

OO
go

O0

O0

O0

O0
O0

O0

• OO

• O0
O0

OO
• O0

OO

O0

• O0

• O0

O0

• OO

• O mm

O
0 .

L
C_

0

e

: 2-

(,_

f_

4.4 Analog Processor Card

The analog processor consists of several distinct parts. There is
the analog processing circuitry itself, there is temperature regulation
circuitry, and there are CCD clock signal buffers. Each part will be
discussed in turn below.

4.4. I CCD Video Processing Circuitry

The CCD video signal enters the clock analog module on pins 19
and 37 of P5, a DB37 that connects to the feed through connector on
the side of the camera head.

The signal is passed first to a differential amplifier composed of

UI, an AD842 from Analog Devices, and resistors RI, R2, R3, and R4.
This differential amplifier eliminates common mode signals between
the camera head electronics and the analog processor circuitry.
Jumpers J1 and J2 allow one to ground both inputs to this amplifier
to test the noise floor of the processor alone. This differential
amplifier has a gain equal to R2/RI and RI=R3 and R2=R4. This gain
was set to 1.37.

The signal from the differential amplifier next is fed to the DC
restore amplifier, which clamps the reference signal of each pixel to
ground level. The gain of this stage is equal to:

1 + ((R7*R7A) / (R7 + R7A)) / R6

R7A is not normally needed and is included in the circuit only

as a convenient way to adjust the gain of the system. When the STIS
AIS1 camera was delivered to NASA, this component was not
installed.

After the DC restore section the signal branches, with one half

going through a precision inverter. This inverter is constructed using
a low drift op-amp and .01% precision low temperature coefficient
resistors. The accuracy and stability of this inverter are very
important in the overall performance of the circuit.

The DC restored signal and the inverted signal are then fed into
the integrator. The integrator is built around U8. JFET transistors 0_1
and Q.2 are used to selectively connect the video signals to the
integrator input. These switches are controlled by TTL lines named
SA1 and SA2 on the schematic diagram. Because these switches

require a voltage swing of-15 to 0 volts, an analog switch, U5, is
used to convert the TTL level control signals to the proper scale.

The integrator includes a DC offset adjustment. In addition to
serving as a way to balance the offsets of the data from the two CCD

4-28

ports in the system, the offset adjustment circuit also adjusts the
video signal to match the -5v to +5v input range on the analog to
digital converter. Reference voltage U6 provides 10.0 volts to the top
of the voltage divider formed by R13, VR1, and R14. The DC voltage
at VRI's wiper contact is fed to the input of the follower formed
around U7. The resistive components included in this circuit are of

the low temperature coefficient type for stability. The output of the
follower is switched across the capacitor by closing an analog switch.
When the switch is closed, the output of the integrator is charged
with a time constant equal to (R17"C6). R16 and R17 must be of

equal value. In order to assure accuracy to 16 bits, the pre charge
time, when the switch is closed, should be at least 12.5 times the
time constant (R21"C23). This period is referred to as 'integrator

reset' in parts of this document.
The output of the integrator is connected to the input of the

analog to digital converter, U14, an AM30516 hybrid converter
module from Analogic. This converter requires approximately 5 usec

to perform a conversion. During the conversion, the integrator
switches are all open and the charge on the capacitor is held. No
sample and hold amplifier is used. The converter does not contain a
sample and hold. The conversion takes place after the signal
'command to convert' or 'CTC' is received.

The digital data produced by the conversion is fed into a shift
register to prepare for serial transmission. The data are in
complementary binary form. A PLD, U13, is used to generate the
clock signal required to transmit the serial data steam. The serial
data and clock are then fed both to a MC3487 RS422 transmitter and

to a pair of fiber optic drivers, with ST type connections. Both
transmitters are driven at all times. There is a jumper on the
VMEbus interface to determine which interface is being used.

4.4.2 Temperature Regulation Circuitry

Another large portion of the circuitry on the analog card is

designed to regulate the temperature of the CAM and, more
specifically, the analog to digital converter.

A platinum wire RTD is used to sense the temperature of the
analog to digital converter. This RTD is controlled by the current
source formed by it and Ula, R80, RS1, R82, and VR4. The nominal
current of i mA through the RTD may be adjusted via VR4.

The voltage drop across the RTD is sensed by U33, an
instrumentation amplifier. The gain of the amp is set to 100. The

measured temperature is then scaled by the amplifier built from

4-29

U32d, R83, R84, and R85 to 0.01v/degree Celsius. The measured
temperature is then connected to P6 and then to a meter mounted on
the CAM chassis near the fan.

A 'desired temperature' is set by adjusting VR5. The voltage
produced is compared to the actual temperature by the differential

amplifier formed by U34a, R90, R91, R92, and R93. This 'set point'
may be measured at pin 5 of U32. At this location it has a scale of
O.01v per degree Celsius.

The error signal produced by the differential amplifier is then
fed to two circuits. One of these, as the difference signal becomes
more negative, increases the current through a large resistor used as
a heat source. The other, as the difference becomes more positive,
increases the voltage applied to a small DC fan that draws air in
through the vent located beneath the analog card, around the boards,
and out through the fan opening, located beneath the clock card on
the outside of the clock/analog module. When adjusted for a
temperature approximately 10 degrees Celsius above the ambient

temperature, the circuitry will readily stabilize to a point where
neither the heater nor fan are running very strongly.

4.4.3 CCD Clock Signal Buffers

All of the CCD clock signals and DC reference voltages that
connect from the clock card to the camera head pass through the
analog card. They arrive from the clock card on P4. The pinout for P4
is shown below.

Pinout of Analog Processor Card P4

2 parallel clock 1 28
4 parallel clock 2 30
6 parallel clock 3 32

8 parallel clock 4 34
10 transfer gate 36
12 serial clock 1 38
14 serial clock 2 40

16 serial clock 3 42
18 serial clock 4 44
20 extra clock 4 46
22 extra clock 3 48

24 extra clock 2 50
26 extra clock 1

unused
unused

substrate (unused)

reset pulse
summing well pulse
summing well low

summing well high
reset low

reset high
last gate
output drain
reset drain

4-30

The odd numbered contacts on P4 are unused.
Those wires are connected to ground on the clock card,

The serial clocks, parallel clocks, and transfer gate clock are all
buffered on the analog card using LM6321N buffers from National
Semiconductor. These buffers provide most of the current required
to drive the CCD, and they take that current directly from the +15v
and -15v supplies on the analog card. The buffer circuits provide two
other features. One is the resistive load to ground on the input. This
pulls the buffer's output to a near ground potential when the ribbon
cable is removed from the P4 connector or when the CCD clock
switches have been disconnected by the analog switches on the clock
card. Also incorporated into the CCD clock buffer circuitry is an RC
filter network that may be used to adjust the CCD clock signal rise
time. These resistors and capacitors are installed in sockets allowing
for easy replacement should some other time constant be desired.
Additionally, damping resistors may be placed on the buffer outputs
to further control signal rise time. Parallel clock drivers are capable
of driving 0.02 uF loads at 500 kHz. Serial clock drivers are capable
of driving 500 pF loads at 1 MHz.

The CCD reset gate and summing well are controlled by analog
switches located in the camera head. The TTL signals to drive the
switches and the positive and negative rails for the gates are passed
through the analog card. The TTL signals are available at test points
for diagnostic purposes. The DC rail potentials are connected from the
clock card at P4 to the camera head at P5 through a resistor network.
One resistor ties the signal to ground, so that the voltage will reach a
near ground potential when the source voltages are disconnected on
the clock card or when the clock card is not connected to the analog
card. Another resistor follows in series; these resistors are meant to
serve as a part of an RC filter network with capacitors in the camera
head. They are generally not needed or installed.

The CCD reference voltages, the output drain voltage, VOD, the
reset drain voltage, VRD, and the last gate voltage, VLG, are also
connected to the camera head through resistor networks such as
those described in the previous paragraph.

Test points are provided for all the CCD clocks and reference
voltages. In the case of the serial and parallel clocks as well as the
transfer gate clock, the test point is located after the buffer amplifier.

All the CCD clock signals and reference voltages connect to the
camera head at P5 on the analog card. This connector plugs into a
connector that feeds through the camera head CCD chamber wall. The
pinout for this connector is shown below.

4-31

Pinout of P5 connector on AIS 1

1 serial clock 1 20
2 serial clock 3 21

3 TTLreset 22
4 extra clock 1 23
5 extra clock 3 24

6 parallel clock 1 25
7 parallel clock 3 26
8 transfer gate 27
9 28

10 last gate 29
11 reset drain 30

12 reset gate low 31
13 summing well low 32
14 33
15 -15v 34
16 +15v 35

17 +28v 36

18 ground 37

19 CCD video high

analog card

serial clock 2
serial clock 4

TTL summing well
extra clock 2
extra clock 4

parallel clock 2
parallel clock 4

substrate (unused)
output drain

reset gate high
summing well high

-15v
+15v
+28v

ground
CCD video low

q

4-32

4.4.4 Analog Processor Card Schematic Diagram

4-33

q

IN

{0

il

ill a_ p II ii
o%1-i,,114, •

I It

@--=,--
II0

4

o

I-

o

=
,4

i q

°a"

I

"T' !

i,'q

vv.

),,_.
11.4

".%'. _

_u

_ f,i M

U

=

M

=:

_ Q

N -
H _ A

OID -- _ •

_a "" i

U-h _1

_t m H m ,

o N

i

A

qI'

I

| V I IEI ii ii |

4

+

,'4O
IIl'm
A_A

B

m

0

o w
e_o

- o

m "1

_il li!

o. IIl_I
o_:I_I
:.i.101
uI _Io I

.:I_

_'il_i:1 _ -

o

_o

+

o
N

l-q

ql

m

II

t - t _l

Q

late _a °
IMI_. MWM

° _
o

]-i-1-,

-.+

_,41,1

a

oh

|1
;I

I
! m

4

-- v

D_L.

mJ o

o!

r,', _
e_

i

¢NI

I.I

qI'

I

I=i U

,,,lh

i_ ir

÷

,oal

d

a w
u

M 4

u

_a

m_

MI

.BI

e.l

inl

-i
I,I ..I
N '11

_Q 0

Z| P'

I,,dD

Uah

i'!

0

o

o _

x _

0-4

CVl

qIP

IFI

qO

I

I4

ee al
qFlil,
ICe_

,q
wl

+

q,,a
IP

u

q llq

I

! ÷

°_ii I
E_

o I

o al

i

in

m

i +

iqa
_a
uiii

q

m

ii

m

aq

q, lll

m

I

m

mq

+

M

u

e_ me

Ii

m

_ ,,I w

i +

_a

ii

Ke_

q

A
IQ aQ

qp

_4

I

mQ

UI*

I
i

m

N N
M 4

OE D °o
_-I e" o

£]i _ 0 o

1:3 •

_. H

b,4 I --

o

I i I I I

N

qP

If)

,4

I
q,

m E

_M

,4

wal, m
r_14
mn

M

..0 a_

_M P-n,
o
F_M
_ee

m _

N _

_a
f,- iii
m_ _M

m

ile mM Mil M Mile M

,.,a: Ma_
wa, o

.i

|1

iz_ o-

_i _ '
,4_,.

i

_ D

a

m m

m

0

I o

O'J •

I-4 4 w

_.. & m

QI: D m

_m pm

_31+a
-f!:-_o

_m Z
.m.Eo"+4 o
K/I h I
Z4 " 0_ ,_

1"4

mo

i

I

4
!+
1.1
o

ii
+4
i.l
N

I

C_l

In

,iF

tl

I I

llllllllllll
m M

IIIIII

I

r,,
m

ill •
i,I ,,
H 4

v m
i-i= ,°

QZ D

_If O

Ir|]l iD

D m

ME_
tJi b

Z4 .

o

o

m

l,

t_

In

m

tdp

I

_h

mh
_D
U_
m °

4
_k
_D
U_
m •

d
_k

U_
m *

--t1--

4
ok
lid
Up*
N °

--ti--

0

o
m

_k

-t!--_
4
_k
lilD
U_

4
wb
ND
U_
I *

---I_-t

4
mb
lid
U_
li °

0

_M

. m
_m

-rn-

_h

"--41--"

mh
ND
U_

---te--

lib
liD
U_
• °

--tl--

_k
lid
U-q

--tl---

ob
_D

II •

--t_--

+

=_-----
p

_h
I_IID

i n

i I

_1_4

m |

m I

"--II'---t

i u

lid I

I I

+

.]

II ,

u • u

.r_ I
=2 I

:: ; L
r

+

o"

II

o_ I
u m

II !

li o I

F
+

m n
mD I

u * u

,.: ; I..
F

+

::22 :=

_-m-g

m

m

_ o
H .

121 D
,-_1 P

_a
rs_

_: -u h

_ O

u. ,_

mo
u 1.4

+

+

TrrrTrTrr

r._.

o

> o

o-_
o

o

,-1 o

n

H i

N

m

4.4.5 Analog Processor Card PCB Artwork

4-44

Z
W
W

0

i

n
0

I
I

I

i

I

I
|

I

I

I

I
I

iI
-_ .,s
8"8_

11

C_c51

(_C27 "":'

I

I RPI

(
RP2

)(

--- i) i£ I i) I

I_
_-,,

== (_C37 P1

0c2_

C26

LO

P2

%,

5
_c_4
(_)c_
C_c_2
C_c-

I

CD
R82

r--1

!)
BC33A BC338

(_) C7

_ce
I

C_c_
I_ClO

I0#,

i00 r-i

i) I

,..-.--,

,,[_. / _

0

W
E_

O0

Z
W
Z
0
O_

0
¢_)

a'oooo_ooOoooo_ol
oooooooooooooooo

"o_ooooooooeooooooo
'O_'O'O O O O • • • • • • • • • • •

'o'o'o'e'oe o o o e o • o • • • • • •
'o'o'o'e'o e o o o o • • • • • • • • •
'o'o'o'o'o 0 o o o o • • • • • • • • •
'o'o'o'o'o'o o • • • • • • • • • • • •

'o'o'o'o'o o o • e • • • • • • •

'o'o'oo'oooooooo°°°°ooOoO o'o'o'oo@ooooooooooOO'O'OOOOOOOOOOOOO

OOOOOOOOOOOOOOOO

000000000000 •

0000000000000000000

0000000000000000000

0000000000000000000

0000000000000000000

000000000000

OOOOOOOOOOO

OOO00OOOOO

OOOOOOOO00

OOOOOO0000

OOOOOOOOO0

0000000000

0000000000

OOOOOO0000

0000000000

OOOOOOOOOO

OOOOOOOOOO

0000000000

0000000000

OOOOOOOOOO

0000000000

0000000000

0000000000

OOO0

0

0

@ @

',,,W

r_

©

© i
I
r

i

@
OOOOOOOOOOOOOOOOOOOF-

Oe• 6Jo i • Jl"_ OIor-----I • O O O O O O O O O O O O O O O O O O O

"-I" " " t'-'--_lI'I " ";;:""'°'"'°'"'"_ o'o'o o'o e • o o • e • • o • • • • •

.;;;++.............• • o" .'.'._o'o o • o • • • • • • • • • • •eo.o o_lo o o ooooooooo

• :"II° " :lllOl II • ""o.._,_,,............
-. _ . . . ,_ .o...++,o....o.....+,.Ji "'"'+'""'"'"o_e_o.o_bi + e • e • • o • •

• o oo.oooiboooooooo

no ooooo • leO oooo++ellooooooo- 8

°e onu " • J on • ooeooo_boooooooooooo'o'o'o'oo _ 6 • • o • • • • • • • •

,,_p_p,H?_ ?_tP" "" " " "';;;'''''''''''''"o'o'o'oob O o o o o o o o • • oo • ,.j

/ on / i on oooooooooooo

• _---4mfoomm/t,,,..._... _ "o L---i oo ot_,,_o • • ooooooooooo
10,

OOOOOOOOOO

i on ON • • OOOOOOOOOO
J ON on • • OOOOOOOOOO0000000000

_ __ H
• "--"-n _ " " -''"-"--

• _ oo oo_....0.o • _ oogo _ o0oooomm oooooooooo
on oB _ oooooooooo

O00OOO0000
• mm O m OOOOOOO OOOOOOOOOO

t

t_p

r .

/'<

a

0000000000000000000

• • A _ u--4 • u--o _ n--4 • • • |io_o_o_o_ooooooooooooooo
• • % • _-n • • I • • _n • • |.o,oooo.oooooooooooooo

/ -- _ / .o.o.o.°,° .° o o°°°°°°°°°°°
• n---o I _ n-...4 _ u----e _ u----o • • • | o.oo.oo.oooooooooooooo
• • /o _m • _-n I • • ',---nu • • /oo.e.o.o_.o. oooooooooooo

6 _ onnl°°-°-°-°°-°.°°oe°oeo°°°°
e, • ,-..6-----, nu-..4 _ n.,-.4 -] o#oo.ooooooooooooooo/_ • _ _ • _1 In i_ IIIIiOIO. OOtIIIIIIOI

l| • • OOON • _ _ O'O'O'OOOIOOOOOOttO

A // on __! r- o'o'o'ooooooooooooo dh• , o'e'e'e_oeo o • • • • • • •W J/ ___l_:l:o_oo.oooo:. A _;;;;_..,....... W
II. " , .oo, . _|l_l_'o'oo'y6oSV_ooooo _ _-o'o_VVVo,oooooooooo

o- II__ el VI Ill_ ¼ o'o'o'o_OOOOOOOOOOOOO
go 1/_ _-%_1 Oil| O'O'O'OOOOOOOOOOOOOOOO
-o// °" 61o___1 I_1____ • • • oo'o'e'oooooooeooooe--
oo // • • ooon -117• I Iml°°q'm oo'o'o'ooooooooooooooo
oo H on B I Iolnll ooooooloooooo. • • ooo.ooeo.o..0// ° ,o.o. .11I, I1.1.**. • oo,o.ooooo
oo// o_ R I II I om . .. • • ooooooooo,
d_dt, ii /I I I I I " --" m • OOOOOJOOOO
;o l/ _ el II I I I i on - ooeooooooo
OO || _0 • ooonn ei°]_o J JU_OOOU -- • • no • • oeeoooeooo
ooJ/ l __ n II I_l_ , • • oeoooooooe
e_/ / "" I II I'1" ,,e oooooooooe
oo J J • • oooo _l Re I Inw oooo _ oooooon oooooooooo
e.e ! / _- "1 H II .. - ooeoooeooe
o'-_-" J "" _ N . I I "" eoooeeoeoo

• - "11 T II o" . ooo.ooo o.oo.....°
tO / _. • _1_1 I v. -- • • __ OOOOOOOOOO• • °°°"'_-_1 / " °°°" - . • _ o- oooooooooo
"_""_ on / Ion • O n OOOO00OOOO

/ / • • oooooooooo
;. I • • 000" • 0// " ""° • .L: " " " ° .ooo.ooo.-
oo I om / / om • • •
ee I on / / on /-.oeooooei me
om "_ . mm _ _ -- • • • • l _m-

• • ...m_=-_--_, • 000" - • 0•0 / [F-_/_,;

w • ••••• • • ••••• • ": " II_ •"I"L_
OR el /I I I..-.-.-J \\\

...ooooooo. • • • • . LI,_I,_...."-_ _.
OOOOOlllOlO lOll O O • • I ,,I,,Iooooonn ano I I I
OOOOOOOOOOO OR • • I -I-I ,,. I I I
oo..o.oooo. 0" " " FI I'_7 :: lln
OOOOOOOOOOO OOOO • • • • • • • • I -.l-I-a,a_a_& -- I I I
oooooooeoeo • • _ TI-------_ m,, III

IV OOOOOOOOOO0 OOOi ___ • o__ _%1 -- _ __ I I I

, oooo.ooo.oo .o """ " • °0 0° % °il" " ":.l.l.I
OOOOOOOOOOO no • O---O _O II OOi "'1"1"1
OOOOOOOOOOO -- OOOO moo • • °In • II • • • nil
ooooooooooo / _ • • _ go II • _ I I I
ooooooooooo °°1°" '° ' • ooo, ,o II • ill °°1°1°1
OO00000000O A / • I II -- - I I I
.o.o..oo..o n / -- _ I • mllo • • Ill
ooooooo.ooo v OOlO1 '--0) • • ooo. v 'L[- . • III
o...ooo..o. \1 o.,, I " " III
OOOOOOOOOOO I I I I I I

ooooooooooe eolol o_ oooooooooooooooooooooooo IOlll J/'/
ooooooooooo I I _//
ooooooooooo _ _ I lit
oo..oeoooo. / t I III
ooooooooooo ! I I III
ooooooooooo / I I mOlllA

i OOOOOOOOOOO I i n lili

1"ooo n I I "* IIII"

i " il Jl

•. O
O0

O0

OO

O0 _OOOO00

O

0

,J

O000000OOO00000OO00000• _OO000000OO00_ • 0

• Z:

• •

O000OOOO000O00000OO000

OOOOOOO0000OOOOOOOOO00

m O OOOOOOOO000
'_ OOOOOOOOOOO

EO O000000OOO0

EO

Hi

mO

O0
O0
O0
O O----
O0
O0

O000OO0

• o---_

'_ mmo°ooO0_o0

O00OO0 n°o • m

lJoooooo i atO
O00OO00000 OOO0000OOOOO0000000000000000000000000 mO

I • mOO

,.___......... _ "..__ """."_',._-or'""". ,I'"'T . ::o
O0 OOO O000000

"'"'"+ .'"'"'+. "Iooo"" ."*";." :" ,*'*""

_ _ _ -- "" "_----" "-"==-i .+.."e_--"-_--..,-+
• ... oo-, It °*" o* *I'9"

• _.--_1
• EmmonUmOlO

• O • • • o_._

• mooo]ooo

• • I I°

•• •• • • liOl• • " "'1 "
no • mo

mo • • oom oon

mo • • •O o:o::.o, O O "o°:'o" • "" " " : • ..
O IO OOON • • OOOE Omo oooo • • oooo

©

©
k_

4.4.6 Analog Procesor Card Logic Equations

4-53

DEVICE AnalogTiming (PALI6R6)

" The PAL program is for SBIR analog card "

PIN

clkin = 2 (input combinatorial)

ctc = 5 (input combinatorial)

en = 6 (input combinatorial)

ip = 4 (input combinatorial)

enl6 = 3 (input combinatorial)

" format selected high=16 bits low=

/sclk = 19 (output combinatorial active_low)

/clkout = 12 (output combinatorial active_low)

/cnt[4:0] = 17:13 (output registered active_low)

/sen = 18 (output registered active low)

" start transmltting "

" last pixel actived high"

15 bits "

BEGIN

ENABLE (sclk) ;

ENABLE (clkout)

sclk = clkout*/sen+sen*lp;

IF (enl6) THEN

/sen =(cnt[4]+cnt[3]+cnt[2]+cnt[l]+cnt[0])*

(/cnt [4] +cnt [2] +cnt [3] +cnt [i] +/cnt [0])*

(/ cnt [4]+cnt [3]+cnt [2] + / cnt [1]+cnt [0])*

(/cnt [4] +cnt [3] +cnt [2] +cnt [i] +cnt [0] +/ip) ;

" Because that the /sen is registered output we need 1

earlier for the logic equation. The equation is that

IF (0) or (17) or (18) THEN stop sending . and

IF it is last pixel THEN stop on cycle earlier. "

cyc le

ELSE

/sen :(cnt[4]+cnt[3]+cnt[2]+cnt[l]+cnt[0])*

(/ cnt [4]+cnt [3]+cnt [2]+cnt [1]+cnt [0]) *

(/ cnt [4]+cnt [3]+cnt [2]+cnt [1]+ /cnt [0])*

(/cnt [4] +cnt [3]+cnt [2] +/cnt [i] +cnt [0])*

(cnt [4] +/cnt [3] +/cnt [2] +/cnt [l]+/cnt [0] +/ip) ;

clkout : clkin*(/cnt[4]+cnt[3]+cnt[2]+/cnt[l]+cnt[0]+/en);

IF (/en) THEN cnt[4:0] = 0;

ELSE BEGIN

(cnt[4:0]) BEGINCASE

0

1

2

3

cnt [4:0]

cnt [4 :0]

cnt [4 :0]

cnt [4 :0]

4 cnt [4 :0]

5 cnt [4 :0]

6 cnt [4 :0]

7 cnt [4 :0]

8 cnt [4 :0]

9) cnt [4: 0]

= i;

= 2;

=3;

=4;

: 5;

= 6;

=7;

=8;

= 9;

= I0;

END;

END;

I0

ii

12

13
14

15

16

17

18

19

20
21

22

23

24

25

26

27

28

29

3O

31

cnt[4:0] : ii;

cnt[4:0] : 12;

cnt[4:0] : 13;

cnt[4:0] : 14;

cnt[4:0] = 15;

cnt[4:0] = 16;
cnt[4:0] = 17;

cnt[4:0] = 18;

cnt[4:0] : 18;

cnt[4:0] = 18;

cnt[4:0] = 18;

cnt[4:0] : 18;

cnt[4:0] = 18;

cnt[4:0] : 18;

cnt[4:0] = 18;

cnt[4:0] = 18;

cnt[4:0] = 18;

cnt[4:0] : 18;

cnt[4:0] : 18;

cnt[4:0] = 18;

cnt[4:0] : 18;

cnt[4:0] = 18;

END .

5. Camera Head

The AIS1 camera head contains the CCD imager itself as well as
the circuitry necessary to support two channels of video pre-
amplification. The camera head is an evacuated chamber to allow the
CCD to be more effectively cooled by the liquid nitrogen dewar to
which it is connected. The CCD imager easily reaches temperatures
below -80°C. The controller module and clock/analog modules are
attached to the sides of the camera head. In the case of the

clock/analog modules this is to assure that the CCD video signal will
not have to travel far and therefore will not be corrupted by noise

pickup. In the case of the controller module, it is more a matter of
convenience.

5.1 Overview

There are two circuit cards located inside the camera head. One

of these, the Triter card', is used to condition the DC voltages from the
clock cards before applying them to the CCD. In most cases this is a
simple RC filter network, in some it is an emitter follower type of
transistor circuit. The other circuit card is the 'socket card', which
holds the CCD itself as well as the video preamplifiers, one for each

CCD port read. Additionally, there are a number of jumpers on the
socket card which allow the user to select between the amplifiers

located at either end of the CCD serial registers. The two cards are
connected together by a number of interconnects. The two circuit
cards will be described in more detail later in this section.

5.2 Camera Head Connector Pinouts
There are three connectors on the outside of the camera head.

Two of these are DB37 style and one is a four pin style. Each of the

two 37 pin connectors are used to bring the CCD clock signals and DC
power into the camera head for one CCD port. These also bring the
CCD video signal out of the chamber and to the analog card. P5 on the
analog card is a vertical PC mount connector allowing the analog card
inside the clock/analog module to be connected directly to the
camera head. If necessary, this connection could be broken and a
short cable put in its place. The DB37 connectors naturally have the
same pinout as P5 on the analog card. The pinout is shown below.

5-1

Pinout of DB37 Connectors on AIS1 Camera Head

1 serial clock I 20
2 serial clock 3 21
3 TTL reset 22
4 extra clock 1 23
5 extra clock 3 24

6 parallel clock 1 25
7 parallel clock 3 26
8 transfer gate 27
9 28

10 last gate 29
11 reset drain 30

12 reset gate low 31
13 sum well low 32
14 33

15 -15v 34
16 +15v 35
17 +28v 36

18 ground 37
19 CCD video high

serial clock 2
serial clock 4

TTL summing well
extra clock 2
extra clock 4

parallel clock 2
parallel clock 4

substrate (unused)
output drain
reset gate high

summing well high

-15v

+15v
+28v

ground
CCD video low

The third connector on the camera head is used for the CCD

temperature control circuitry. One conductor is used to sense the CCD
temperature, and another is the ground reference for this signal. The
other two are connected to a resistor mounted in the cold block

under the CCD to provide heat with which to regulate the CCD

temperature. The temperature regulation circuitry will be discussed
in greater detail below. The pinout of this connector is shown below.

Temperature Sense Connector

1
2
3
4

5.3 Filter Card

All the signals that enter the camera head from the
clock/analog modules are connected to the filter card. The filter card

supports two clock/analog modules. The circuitry for the two is
identical. The signals from the DB37 connectors on the exterior of the

q

4

5-2

camera head are wired to connectors P6 and P7 on the filter card.
The pinout of these connectors is shown below.

Filter Card Signal Input Connectors : P6 and P7

1 n.c. 15 +15V 29 seriai2
2 n.c. 16 +15V 30 parallel 2
3 n.c. 17 +28V 31 serial3

4 n.c. 18 +28V 32 parallel 1
5 n.c. 19 substrate 33 transfer gate
6 n.c. 20 n.c. 34 parallel 3
7 n.c. 21 clamp 35 sum wellhigh
8 n.c. 22 cur. src. 36 sum well low

9 n.c. 23 VOD 37 reset gate high
10 n.c. 24 VRD 38 reset gate low
11 -15V 25 VLG 39 reset TTL
12 -15V 26 n.c. 40 sum well TTL

13 ground 27 n.c.
14 ground 28 serial 1

The serial and parallel clocks, as well as the transfer gate and

clamp signals pass through the filter card without encountering any
circuitry. They are connected directly to the CCD socket card.

The DC power supply voltages that come into the camera head
are filtered on the filter card. Large hermetically sealed capacitors
are used to bypass the supplies on each side to their respective
grounds.

The CCD reset gate and summing well switches are located on
the filter card. The DC rails for these signals are filtered and then
applied to the poles of analog switches. The switches for both the
reset gate and the summing well on each side are located in a single
integrated circuit, U1 or U4, HI-201HS type switches. The lower rail
of the reset gate is in fact no tied to the voltage supplied by the clock
card. It was found experimentally that the noise figures for the
camera could be improved by tying the lower rail of the reset gate
switch to the CCD substrate near the CCD output. A wire has been

added which accomplishes this.
The substrate signal supplied by the clock card is not used. It

was found that it was better to tie the CCD substrate to ground
directly.

The CCD output drain voltages are filtered by an RC network
and then buffered by an emitter follower. There is additional

filtering on the CCD socket card.

5-3

The CCD reset drain voltages from the clock card are handled

differently. The system was originally designed to provide separate

reset drain voltages to the two halves of the CCD. Each of these was to

have seen an emitter follower on the filter card. It was found that is

best to tie these two points to the same potential. To that end, one of

the emitter follower circuits, that built around (3_11, has been

removed and its output tied instead to the output of the circuit built

around 0_4.

The unused connections on the CCD, those associated with

amplifiers that are not being used, are tied to a 'holding' voltage. This

voltage is produced by the voltage divider and emitter follower

circuit constructed out of RT, R8, and 0_2. Capacitors C16, C17, and C18

are used to stabilize this circuit. The system originally was to have

another of these circuits built around 0_9, but it was determined that

it would be better to tie all the unused CCD connections to the voltage

produced by 0_2.
The filter card also holds the circuitry used to sense the CCD

temperature. A current source draws 1 mA of current through an

RTD epoxied to the CCD package. The voltage across the terminals of

this RTD is sensed and amplified by U7, an INA101 type

instrumentation amplifier from Burr-Brown. The resulting voltage is

fed through the camera head wall on the four pin connector that

feeds into the controller module and to the temperature/shutter

control card.

The signals from the filter card are passed to the CCD socket
card via interconnects between the two cards. There are five such

interconnects. Two identical pairs include all the signals associated

with the CCD itself, and the fifth includes those signals associated

with the temperature measurement circuitry. The pinouts of these

connectors are shown below.

Filter Card Connectors J1 and J4

1 serial 1

2 parallel 2

3 serial 2

4 parallel 1

5 serial 3

6 parallel 3

7 transfer gate
8 CCD reset

9 unused

10 summing well

5-4

Filter Card Connectors J2 and J5

1 unused (formerly CCD video)
2 VOD

3 clamp
4 VRD

5 'holding' voltage
6 VLG
7 current source
8 unused

9 -15V
10 -15V

11 ground
12 ground
13 +15V
14 +15V

The temperature measurement circuitry may be powered by
the +15V and -15V supplies from either analog card. Jumpers on the
CCD socket card select which will be used. It was found that it made
no difference which side was used (which is what you'd hope). The

selected power supplies are brought to the filter card via J3. The

pinout of this connector is shown below.

Filter Card Connector J3

1 +15V

2 +15V
3 GND
4 GND
5 -15V
6 -15V
7 unused
8 unused
9 RTD+
10 RTD-
11 Heater+
12 Heater-

5-5

5.3.1 Filter Card Schematic Diagram

5-6

a

(9

iT-
m
0

.Q

f- m

0

-t>

Z Z oi Z (, Z ,--

o ' ' _ ' 8" o

i
1

a

÷

0

LUg

0. Z _

I EJ

_ N

0

0
0

m

.4>

oi,-
,t,

-,!
q

,,I _

I

----!
I

I p

\----i

I

o

\'---t
I

i

I o

Z

II.

I

I!

I_ LL

I _"_

I

,. 0.._

, i----t m

_ Z

/ "
_ m

Z

J
J
!
]

i

!

o

(n

<

f--

" DI_

a

÷

o_.lt

_Q

z

IS : It

o

t

i

o

o

÷

It

H
0

_J

i z

I_ L_.

0 •

i

I

_LL

I

_J
--3

0

÷

@J

OJ

Z

'0

°H

--i o

I,li

i f" _

a

i 0

, ¢_- E

N N _

121

0

<

a

',_il" 0

nl

+1(_.

Y

y

0

_ _ ÷

I(_ "
÷

w

,: C I i

NI ÷

.!J

0

i

I%

I',,,,.li.

÷

Y

i

a,=i

i

÷ ÷

m

i

im

P
Q

4]4-t_TJ_71_r,_7t_71
.... 77

- _ _

L'i E_, _. i _. _. _.,_.

> I
i

C
I ii '_l

a I

E

<,>_

0

D

L'9

rr"

I •

i *" --
3

t-1 (/)
m

(3

Z Z c Z _ Z _-.o

', . , o ,, =_.. ,, o _
r_
z

- y

O,

O_

LU r=
n-

O. I_ Io,

N

~ .

J

.-,,.

r

"3

"'Iff
a

m \----I

==. .<.'_ .

C3
. ,__,....

I

<

i

(1.

¢1

_n o

\ ---t ----t
I ,, I

_ "° I " "°"'° " "rq"°

'_1"0,1 '_OJ a '_'0.1

z

Z

ffl

,_& i i_. r

01< '0 _1 0

\'

z

o
0
-1"

Z

m

a

o

f

,,f

: ' i_ "
4.

÷

z
c_J
If

a

_a

n,-F-

y

r,,,4.,t.

It h,_

\

o

---|_

Z

\
d

÷

If

%

Z

I_ iv

n- ,,_

0.

n"

I _ o
i >

_" E m

-- E

i-

0

s

\,

m

_u m

! =

/

/

r-.

/1%

0

!>
,,ICI

3 •

Q co

a

0

E

n_ Z

E

0

en

<

_.._r ,w -_.

o

t,.z _

|o

%L'3t_ !

.-i,

÷

i 990

--t(---
-trl L-

990 /

---I(--", f

-iRL" !

/

=d /

m_

i

rn

5.3.2 Filter Card PCB Artwork

5-14

• •

• • m m m OoO °o° mmo
oo oo _ _ _o ,,o ,no oo onnom

in oo own onn o_ _ _ • • • •

oo ---... .-.,,,\ I / . •
go: ,ooooo. "0

i .. __ .: J
_ :: ::.. ,o, /_/

_% % O0 o ° • IO JO go / //

\\ \ :: • ,....... ///
\\ _ mmo nOOOOOOOOOOOOOOOOO00 / /I
%% J oooooooooooooooooooo _ J/
\v oo oooooooo v/

ooouu • •

mmooo0 • •

o

5.4 CCD Socket Card
The CCD socket card holds the CCD and the video preamplifiers.

In addition, it also holds conditioning resistors for the CCD serial and

parallel clocks and various bypass components for the CCD reference
voltages.

The CCD socket card receives the clock and reference signals

from the filter card through connectors P1, P2, P3, P4, and P5, These
connectors plug into the connectors J1 through J5 on the filter card
and therefore have the same pinout as described for them above.

There are many options available for the configuration of the
CCD socket card and these are selected using jumpers. The various

options will be discussed in the following sections as appropriate.
The CCD socket card is designed to hold the Tektronix M745A

CCD designed specifically for the STIS project. The CCD is a four port
device and the camera is designed to support two of those ports

simultaneously. Because the quality of a particular CCD output port
cannot be predicted, it was decided to clock the CCD in a 'split

parallel' configuration and use one output port on each serial
register. To select which end of a serial register is to be used requires
the positioning of several jumpers. Jumpers are provided for
selecting which VSS signal is attached to the preamplifier, and

jumpers are provided for selecting how the various reference
voltages, VOD, VRD, and VLG are connected as well as for the reset
gate and summing well signals. These signals, at each of the four
ports, may be either connected to the active signal associated with
that point, or tied to the 'holding' voltage by the placement of the
jumpers. To allow a particular unused signal to 'float' simply remove

the jumper altogether.
The CCD signal may be processed in a number of ways before

reaching the preamplifier. Jumpers J3 and J6 select whether the CCD
outputs will see a current source or a simple load resistor, and
jumpers J2 and J5 determine whether the current source will be set
by a voltage divider located on the CCD socket card or by the
programmable voltage provided from the clock card. The simple load
resistor was found to provide results equal or better to the other

options at this point.
The video signal then passes through C26 or C60, to provide AC

coupling of the signal. Transistors 0_6 and QI 3 are used to clamp the
signal to ground during each row shift period. Transistors 0_7 and 0_14
are used to buffer the signal at this point, and operational amplifiers
U3 and U6 serve as the preamplifiers. The gain of these

preamplifiers is set to 11.

5-19

The video signals were then to pass through connectors P2 and
P5, but it was found that they picked up excessive noise through this
path, and individual wires were connected from the CCD socket card
to the DB37 connectors on the side of the camera head.

5-20

5.4.1 CCD Socket Card Schematic Diagram

5-21

a

o

c0i

D :i_:'._o_r] _. _0_.

CO

1 "

m

o
a

0 0
0 U

Z

a

ffl

I--

z
U _r

W

el

w

U_

Oi

m

.J

z

!

<

_LL

Z

_.0

o,,,

i
i

c_

a

Z

_J

0

CI
0

x

+L
+--_+

IN

NO

It"

0

4,

u.o

r'--

It

@It

+

,,, ,,, _

ml

<

v. I ¢,,,,j

a

o

rn

,.r

u_ z

z

0

Z_ _ ..
o ,,,

,,o,__ _°Z

ill< 0.

I.-Z '"

X _8
a

I

LI4

..J
0,.

<E
r,3

>:

X

m

i
i

m m x
I

z, _.. _lJ i .i_-

wu,,

8 _.
II"

|o

I

i

!
W

'tO"m ql'

N

Z
¢1

oE6"..oo-_"J

NO

II" ILL

II

e_ 0

II

+II

;L

+

er
W

(3 (3

, ILl _

_ __ -

<

(3

a3

o¢

g

H-

p_

!

i
÷

_L

I(

IV

w

v

o
o

w

n-

ILl

tU

W

I--
o
Z

5.4.2 CCD Socket Card PCB Artwork

OOOOOO0

OOOOOOOOOO00OO • _OO000000000

I
O0000OO00OOOOO

OOOOOOOO00000

O00000OOOOOOO0000OOO0000OO00

I •

I •

I O

OOOOOO0

OOO0

OOO0

• •
• OOOOOO0

go

10000
OOOOO

• oj

CO
O)

00000 000000
O000a O0000a

O0
O0
O0

O0
O0
O0
aO

0000000000000 00000000000000

0000000000000 00000000000000

0000000000000000000000000000

0000000000000000000000000000

aoooo
00000

o oa

O0
O0
oo
O0

O0
O0

o
O
'11"

5.5 Tektronix M745A CCD
The CCD used in the STIS AIS1 camera system is a 2048 row by

2048 column device designed and fabricated by Tektronix
specifically for the STIS project. The device is fabricated using three
phase poly techniques in common use for CCD design. The pixel size is
21_ x 21_. The serial register extensions contain 20 dummy pixels.

The output amplifiers are of the 'lightly-doped drain' type.

..I

!--
0
Z

Z

=-

ZO-_O

JIlo oll L
T " TQ. Q.

E E
< <

m m

m

°o

c- co
"_ _- e-
l, 0 o

0 0

Hay 22, 1990

M745A Froh£slde

Package Ground

2. _/c
3. Chl_Ground

'q_4._VoV dc _ c amplifier

5. Reset C amplifier
6. Last Gate C amplifler
7. Serial Phase 3C

8. serial Phase IC
9. Serial Phase 2C

I0. Serial Phase 2D

II. Serial Phase ID
12. Serial Phase 3D

13. Last Gate

14. Reset

_<'- J15. VodD "
16. Chip Ground

17. N/c

,/2.1(_9 _IC
:- . VoutD D amplifier

20, VDDD D ampltfte_
21. O amplifier Ground

22. Summing Well P amplifier

23. Transfer gate
24. Parallel Phase 3

25. Parallel Phase 1
26. Parallel Phase 2
27. Parallel Phase 2
28. Parallel Phase 1
29. Parallel Phase 3
30. Transfer Gate

31. Summing well B amplifier

32. B ampllfler GroUnd

__33. VDD B B amplifler

34. VoutB B amplifiet

P amplifier
P amplifier
P amplifier.

Pin Lis£

Wc
• Chlp GroUnd

38VodB.
39: Reset

40, Las£ Gate

41_ Serial Pha_e 3B
42, serial Phase IS

43, Serial Phase 2B
44, Serial Phase 2A
45. Serial Phase 1A
46, Serial Phase 3A
47_ Last Gate
48, Reset

49, rod A
50. Chip Ground
51, HlC

./c

B amplifier

B amplifier

B amplifier

A amplifier
A amplifier
A amplifier

53, VoutA h amplifier
I B4, VDD A A amplifier

55_ A amplifiet GroUnd

56, SUmming Well h amplifier

_i_57_ Transfer gate
58, Parallel Phase 3
B9, Parallel Phase 1
60. Parallel Phase 2

61. Parallel Phase 2
62_ Parallel phase 1

63, Parallel Phas_ 3
64, Trahsfer Gate

65, SUmming well c amplifier

66_ C amplifie_ GroUnd

7 VDb C c amplifier

/ 68. Vou£C C amplifier

Please note carefully £haE the Dad lis£ and £1,e p_ are
identical!!

O £_,t,a'_ &

r
f

Static Handling Procedures:

All CCD devices should be slored or
transported in conductive material so
thai all exposed leads are shorted
together. CCD devices should NOT be
inserted into conventional plastic
"snow" or plastic trays of the type used
for storage and transportation of other
semiconductor devices.

All CCD devices should be placed on a
grounded bench surface and the
operator should be grounded prior to
handling the device. This is done most
effectively by having the operator wear
a conductive wrist strap.

Whenever handling a CCD circuit, DO
NOT WEAR ANY NYLON CLOTHING.

130 NOT insert or remove CCD devices
from lest sockets with the power
applied. Check all of the power
supplies to be used for testing CCD
devices and be certain that there are
no voltage transients present.

When any lead straightening or hand
soldering is necessary, provide ground
straps for the apparatus used.

Cord chambers using CO 2 for cooling
shoutd be equipped with baffles and
devices MUST be contained on or in
conductive material.

2048 x 2048 Package ConflguraUon (68 Lead Metal Package)

PIN #1 (welded to package body)

2.eoo"sQ.2.600" 4 PLACES

L 0000o

,, _-- 00
.200 TYP o

O
O

O

O

O

O

O

O

O
O
O
O
o

0 00000

o o o o o 0 ooooo

O O O O O O OOOOO

_J

T-!

BOTTOM
VIEW

O

O-
O
O
O
O-

O

0

0

0

0

0

0-

0
0
0

0

0

4 PLACES @. t 00"

•..400" NON-ACCUM.

(8 PLACES)

7 SPACES @ .200"
- 1.400" NON-ACCUM
(4 PLACES)

A

Jl

lilllllllil IIllU s':°'°''
.018"*.002"

Figure I

" i i_ i II

D
6. VMEbus Interface

6.1 Overview
The AIS1 camera is interfaced to the Sun 4/260 workstation

via custom VMEbus interface cards. Two identical cards are used, one

for each port of the CCD in use. The VMEbus cards are used for
communication with the camera controller and to collect the image
data from the clock/analog modules. The cards are modified versions

of the Photometrics VME200a camera controller. They are provided
with a custom adapter board designed for this camera system that
can be used to interface the camera to the workstation via fiber optic
cables. The VME200a cards and the adapter boards will be discussed
below.

6.2 Connector Pinouts
There are six connectors on the face panel of the VMEbus

interface cards. At the top is P6 a DB9 style connector used to
connect the CCD data and data clock lines from the clock/analog

module to the VMEbus interface. The pinout of this connector is
shown below.

VMEbus Adapter P6 Pinout

1 clock +
2 clock -
3 data -
4 data +

5 ground
6 ground for cable shield
7 unused

8 unused
9 unused

P7 is an 'ST' style fiber optic connector used for the CCD data
from the clock/analog module and P8 is also an 'ST' style connector
used for the data clock.

P9 is an 'ST' type fiber optic connector used for the serial
communications transmit channel, and P10 is an 'ST' connector used
for the receive portion of the serial communications.

J1 is a female DB9 type connector used for serial
communications over wire. The serial communications cable connects

6-1

to the 'RS422' connector on the controller module. The pinout of the
J1 connector is shown below.

VMEbus Adapter J1 Pinout

1 transmit+
2 transmit-
3 receive+
4 receive-
5 unused
6 unused
7 unused
8 unused
9 unused

6.3 VME200a Data Interface Description
A complete description of the VME200a camera controller card

from Photometrics is beyond the scope of this document. In this
document, a simple description will be provided with emphasis
placed on the modifications made to the card to operate the AIS1
camera system.

The VME200a camera controller is a VMEbus compatible
interface card used in conjunction with Photometrics series 200
camera systems. It includes two on board processors, a 68HC11 and a
DSP56001 (design ideas borrowed fro the development of the AIS1),
and up to 32 MB of DRAM memory. The memory on the interface
card is dual ported between the VMEbus and the camera data
interface. The memory appears as A32/D32 memory to the VMEbus.
The cards used in the AIS1 system are populated with 8 MB each.

The 68HCll processor on the board is used, in this application,
as a very smart serial communications controller. All communication
with the camera controller are accomplished through the 68HC11 on
one of the two interface cards provided. The 68HC1 ls also perform
various housekeeping tasks on the cards including preparing the
DRAM array to accept the camera data. On the second card, these are
the only tasks the 68HCll performs.

The DSP56001s have been removed since they were not
needed in this system.

The serial data from the camera is converted into parallel form
on the interface card and stored into memory as it arrives. FIFO
memory devices assure that data will not be lost during DRAM
refresh cycles. The 8 MB of memory appear as a single block. Neither
the on board 68HCll nor the VMEbus master have any control over

6-2

|
where the data will be placed except to reset that location to the base

address of the card. This is typically done before the camera is

passed a command that would cause it to produce image data. See

the 'C' Language Interface section of this document for more details

concerning the operation of the VMEbus interface card.

6.4 Fiber Optic Adapter
To accommodate the fiber optic communications and data

channels, which are not a standard part of the VME2OOa, a special

adapter card was designed. This card, a simple two sided circuit card,

contains the necessary components to convert the differential TTL

and RS232 level signals provided and expected by the VME200a into

the RS422 and optical signals needed to interface to the camera.

The card bolts into place at the front end of the 6U to 9U

VMEbus adapter used to install the VME2OOa in the Sun workstation.

Complete schematics of the fiber optic adapter card are

provided in the following section. The circuit board artwork follows.

I

i

6-3

6.4.1 VMEbus Fiber Optic Adapter Schematic

6-4

a

o

<

.J
a.
Q.

- !_ 8

_U
z rr" :1: uJ

" 0 IZ

i
i

Q,.

-'l-

W

i

-J

z

0

<

a

m

0

0

0
C_J

_1" :3

O0

'l !
I

' I
o

O

u2

Jl+ J

;[-
a

o

-I
+It "-7

|

CO

I.I. I .o,
'=I" i..m_

I-
ii

X

0

C_

LL_

AOg ._n L"

_1

<d "1 _"1 ,,., .

I" .1-

Lg
I/ _ k.

AOg ':In L" _' _
leA_

&El

0

m

i.

0

(_"

u2

I

I

, I

.,d

o

cc

W ¢

®:" ® ®!_
_ N

r'_ '_,

I

L'I
I

..... !

0

ED

6.4.2 VMEbus Fiber Optic Adapter PCB Artwork

6-5

I-
u)

,o.
_"od

X X
X XX
X XX
X X

X X

X X XXX

I- X X
X X XXX
X X

_ _ × ×
_ × ×X X

× ×

× ×

_" X X

x x

X

I-

>.>-

I-

XX

X X
X X
X X
X X
X X
X X
X X
X X

XXX

XXX

XXX

-..]

I-

I-

)->.

#-

++
XX ++

-4-+
Jr+

-,F-F
.4-+

XX +-I-
X X ++
X X
X X
X X

X
X XX X

)- >,.
>..
>-).-

++
++
-I-+
++

XX

XX

-I-+
++
-4--4-
++

W _,

Wz

Z
<

0
<

,<

<:

Wl

lj '"iiJii

!
!

!
)

l
)

@ @

o"°
o°J--Jo° o°
OL,jO_ Oo°

I1-_ _°°oE_o°

o_o _
oo o o
o o o o

o o [] eO0o ° _J

oo o o oD?OoOo I---_I a O0

_Q or--_o:: _o

JIO0
O0
O0

oAo O0o o
uJ 0 O_

LJ.I

_.J° O0
_" I°g I I

_, o o I oo t---'--'
__ _l-io II1-_1 oil _ I

I --I ol Io _1"oo

o 0
o

O0
O0

I

0
0

o
o Q

o
o

o o
o 0
o o

o
a

o o

D

o o
o o

o
o

o

O0
O0

o
o o
o o

o

a
0
0
0
0
0
0
0
0
0
0
0
0

o o
o o

I I_,,.,. ...I
• O.

@

--_ _ _[-]_

°[J°
_-- 0 0
vA 0 0
_v

wA 0 0
Av
vA 0 0
Av
v_ 0 D

_G

A I

v_

v_
_v
v_

_v
VA
AV
V_
_V
VA

AV
V_
AV
VA
_V
V_

_V
VA
A_
V_
_V

°_°
0 0
0 0
0 0
0 0
0 n

r

;i

°I]°° IUoo _ooOIn
0 0 _ 0

0 o

o_l'oo !
,o,,oOO_DU_

a

,.. I°O0
_ I oo

O0oni.Ioo
°L.,Jg ,__

L$

-1

' O0 p

O0
O0

'_ O0

_ O0
-k. oo

O0

_y-
i_v

I v

8
m.

0
0

@ @

8. Sun Microsystems 4/260 Workstation

The Advanced Imaging System CCD based camera includes a

workstation class computer for data acquisition, analysis, and

storage. This computer is a Sun Microsystems model 4/260. A

complete description of this computer is beyond the scope of this

document. A brief description will be provided in this section to

familiarize the camera system operator with some of its basic

features.

The Sun 4/260 CPU is based on a SPARC type processor and is

rated at approximately 12.5 million instructions per second. The

processor is installed in a 12 slot VMEbus compatible chassis. The

CPU is a two card set occupying the left-most position is the chassis.

The system includes an eight bit color display with a resolution

of approximately 1100 x 900 pixels. This display adapter is
connected to a 19 inch color monitor.

48 MB of memory are installed in the system to allow it to

more readily support the 2048 x 2048 pixel images produced by the

camera system, which occupy 8 MB of memory per frame.

A 347 MB internal disk drive is included. After the storage

required for the UNIX operating system and the IRAF image

processing package, approximately 60 MB of storage remains.

An external storage module provides another 550 MB of disk

space and a 650 MB removable read/write optical disk for archival

storage and data transport.

A low density tape drive is also included. This tape drive

supports the DC300 type of media, and provides 60 MB of storage

per tape.
The workstation is connected to the camera electronics via two

VMEbus interface cards installed in the chassis. These interface cards

are described in greater detail elsewhere in this document.

8-1

9. System Software Overview

The AIS1 camera system includes custom software programs

that run on the various processors in the system. The camera itself

contains two processors, each of the VMEbus interface cards includes

one, and the there is the Sun Microsystems workstation itself. Custom

software has been developed for each of these as a part of this

project. Each of these programs will be discussed in greater detail in
the remainder of this document. This section serves as an

introduction to that information.

There are four microprocessors embedded in the camera

electronics. Two of these, a 68HCll microcontroller (MCU) and a

DSP56001 digital signal processor (DSP), are contained in the camera

controller electronics. The camera controller is the digital timing

generation system, typically mounted in a small chassis bolted to the
camera head. Also, there is a 68HCll CPU located on each of the

VMEbus interface boards. In the STIS AIS1 camera, there are two

VMEbus interface boards, one for each CCD port read. The processors

on the two boards execute identical code, but are used somewhat

differently in the workstation software.

There are several custom software programs available on the

Sun Microsystems 4/260 workstation. There is a set of 'C' language

control routines that a programmer might use to control the camera,

or as an example of how one might do so. There is a set of utility

programs written using the 'C' interface routines, and there is an

interface to the Image Reduction and Analysis Facility (IRAF) image

processing software.

The different portions of the camera system software are

discussed briefly in the following paragraphs of this section of this

document and discussed in greater detail in reverse order in the

following sections.

9.1 Embedded Software

The AIS1 camera electronics unit contains two digital

processors. Each of these has particular functions in the overall

operation of the camera system, and there is a high level of
interaction between them. Dedicated software has been developed

for each processor, and each package will be discussed in turn in this

section.

The 68HCll microcontroller (MCU) performs all communication

between the host computer and the camera electronics. It does so

over a 9600 baud RS-422 serial data link. The host computer issues

9-1

commands to the MCU to set parameters, return status, and perform
image acquisition functions. The MCU, in turn, commands the
DSP56001 Digital Signal Processor (DSP) to perform whatever tasks
are necessary in order to carry out the host's request.

The DSP generates all CCD clock timing and pixel conversion
control signals. Functions include clearing the CCD, reading the data
off the CCD, and a variety of lower level charge shifting and data
acquisition operations. The DSP is also responsible for setting the CCD
clock and output amplifier operating point voltages. The DSP
performs all operations under the control of the MCU.

These programs are described in some detail in following
sections of this document. Sections 5 and 6 contain information
regarding the 68HCll FORTH program and section 7 contains
information regarding the DSP program. These more detailed
descriptions are of interest to those who would like to create
programs to run on the workstation to control and collect data from
the camera. It is also of use to those who would like to interface
directly to the cameras via an ASCII terminal in order to modify,
maintain, or debug the camera software and hardware.

The 68HCll CPUs located on VMEbus interface execute a
software program developed for use in this application and for use in
the Advanced Technologies VMEbus interface boards used with other
Advanced Technologies cameras. This software is discussed in
general terms in section 8 of this document, and the source is listed
in section 8a.

9.2 'C' Language Control Library
A set of 'C' language routines is provided in the form of two

source code files: ATDcamera.c and ATDcamera.h. The source code in

these files serves as a demonstration of how a programmer may

control the camera and collect image data using the VMEbus

interface cards.

These files are discussed in section 4 of this manual and the

source is listed in section 4a.

9.3 UNIX utility Programs

A small set of utility programs is provided for manipulating the

camera from the UNIX command line. These utility programs were

written using the 'C' language control library, and serve as practical

examples to the camera system programmer in addition to their use

as camera configuration utilities.

Included are programs to initialize the camera system

parameters, to send individual command strings to the camera from

9-2

the UNIX command line, and to send text files containing camera
commands to the camera. These programs are provided in order to
assist in supporting some of the programmable features of the
camera through a simple command line interface which would not
require programming

AISsay is a program that allows the user to transmit any text

string to the camera through the serial link on the VMEbus interface
cards.

AISsetup is a program that allows the user to set the various

camera parameters and to download ASCII text files containing CCD

control voltage settings and CCD timing information to the camera.

AISfile is a program that allows the user to send any arbitrary

text file to the camera through the serial interface. These files would

typically consist of FORTH commands for the camera to execute or

compile.

These programs are discussed in greater detail in section 3 of

this document.

9.4 IRAF interface

The camera may be controlled from within the command

language of the Image Reduction and Analysis Facility (IRAF)

developed at the National Optical Astronomy Observatories. IRAF is a

complete data reduction and analysis package used by many

astronomers. The camera may be controlled and data acquired using

a set of IRAF commands developed at the Steward Observatory.

This interface allows the user to perform simple data

acquisition functions, and allows the user to then manipulate and

analyze the images acquired using IRAF's various tools. It does not

directly support the more advanced features of the camera. No

provision is made for manipulating the CCD control voltages or timing

from within IRAF, for example, but the command set is complete

enough for typical operation of the camera in the field. The user

wishing to simply use the AIS1 camera to acquire image data will

likely use the IRAF software. Further detail of the IRAF interface

software is given in the next section of this document.

9-3

D 10. IRAF Interface

The AIS1 camera can be controlled using the Image Processing

and Reduction Facility (IRAF) developed at the National Optical

Astronomy Observatories (NOAO) in Tucson, AZ. The camera

interface software is based on a model provided by Skip Schaller of

Steward Observatory in Tucson, AZ. Mr. Schaller has developed a

complete package for interfacing the IRAF command interface to the

telescope, instrument, and detector in use. The software package is

called ccdacq. We acknowledge his efforts and appreciate the time he

has spent assisting in the interface of the AIS1 camera to the IRAF

package.

The Sun Microsystems 4/260 workstation included in the

camera system contains the full IRAF package version 2.9.1. A

newer version has since become available, but has not yet been

installed. The system runs under the 'Sunview' graphical user

interface. In the future this will likely change to the 'Open Look' or
'OSF/Motif' interface.

The Sun workstation runs the SunOS 4.1.1 version of the UNIX

operating system. The exact configuration of the operating system

and the various user IDs and other re-configurable portions of the

operating system will likely change with time. In this document, we

will describe the system as it was configured in November of 1992,

and will make an effort to note where the description may change.

10.1 Starting the Sun 4/260

If the Sun workstation has been powered down, then it is

necessary to restart the machine. The computer should reboot
automatically on power-up, but if it should fail to do so the user will

see the boot prompt '>' on the display. The user wishing to reboot the

machine does so by typing 'b' at the boot prompt. If the boot process

is successful, then the user will see a login prompt. At this point the

user may login. Various login names are available. The user who does

not have her own login name but who wishes to use the camera

system, may login as 'iraf' by typing iraf at the login prompt. This

should bring up the Sunview user interface and start the IRAF 'cl'

command interface. If it does not then type 'sunview' at the new

prompt. The exact login process and the appropriate login names

may vary as the system is modified. The 'iraf' login was valid when

the system was delivered. It may be deleted or modified and others

may be added as time passes.

10-1

10.2 Running IRAF
A complete description of the IRAF program is far beyond the

scope of this document. The user is referred to the IRAF user
manuals for a complete description.

After "logging in", the user should type 'ccdacq' to enter the
camera control package and type '?' to get a listing of the available
commands. The commands will be briefly described below. The user
may get a more detailed description of any command by typing 'help
task " where task is the name of the command in question. A

complete listing of the various help documents is provided at the end

of this chapter.

10.3 ccdacq commands

The ccdacq IRAF package contains sufficient flexibility to allow

the user to acquire images of a variety of types and to attach

appropriate header information to them. The basic operation is the

same as for any other IRAF package in that there are a variety of

parameters associated with each task. These parameters will be

discussed in greater detail in later paragraphs. A summary of the

commands available in the ccdacq package follows. These

paragraphs are based on the information in the ccdacq help pages

available from the command line while running IRAF.

abort Abort an exposure in progress. Close the shutter

and do not record data. After interrupting the

observe task, terminate the exposure timer and
close the shutter. Flush the detector. No data is

recorded. You may abort with or without having
first done a pause.

comps Make a series of imagetype="comparison"

exposures. Call observe to make a series of

comparison observations, turning on the selected

comparison lamp, and opening the shutter with the

given time between each chip preparation and chip
readout.

darks Make a series of imagetype="dark" exposures. Calls

observe to make a series of dark observations,

each with the given time between chip preparation

and chip readout. The shutter will not open.

detector Check the current detector temperature.

q

q
10-2

expose
Run an expose cycle on the detector. Use the

parameters set with the prepare command. Called

as necessary by the higher level functions. Used
only for debugging.

flats
Make a series of imagetype="flat" exposures. Calls

observe to make a series of flat observations,

opening the shutter for the current exposure time

between each chip preparation and chip readout.

instrument

The instrument command is not associated with the
operation of the CCD camera.

mores
Call observe to make a series of observations,
using the current default parameters.

observe Make an observation, acquiring data from the CCD.

Observe connects to the detector, instrument, and

telescope servers and creates an IRAF image
containing the data from the detector. All

appropriate information is entered into the header.

An exposure of more than ten seconds may be

suspended by keyboard interrupt (CTRL-C). You

then may use one of the tasks, pause, resume, stop,

or abort. Use help to get information on their
usage.

pause
close the shutter and suspend the exposure timer

After interrupting the observe task, suspend the

exposure timer and close the shutter. Useful for

waiting out passing clouds. May be followed by
resume, stop, or abort.

prepare Initialize the camera controller with the latest

readout parameters. Prepare the interface boards

to collect CCD data. Called as necessary by the

higher level functions such as observe. Used only
for debugging.

readout
Read the data off the CCD. Use the parameters set

with the prepare command. Is called as necessary

10-3

by the higher level commands such as observe.

Used only for debugging.

resume Open the shutter and continue the exposure timer.

Used after interrupting the observe task and

suspending the exposure timer with pause.
Continue the exposure timer from the point where

it was suspended, and reopen the shutter, if it was

open originally.

rvshift Run a reverse vertical shift cycle on the detector.

Use the parameters set with the prepare command.

Used only for debugging.

stop Close the shutter and immediately read out the

chip. After interrupting the observe task and

suspending the exposure timer with pause,

prematurely terminate the exposure immediately,
close the shutter, and readout the chip. Record the

data. Useful if you originally over-estimated the

exposure time. You may stop without doing a

pause first.

telescope Initiate physical action (if possible) on the telescope

and report status to STDOUT. Not a part of the CCD
camera control interface.

tests Make a series of test exposures. First tries to delete

an image named test. Then calls observe to make a

series of test observations, opening the shutter with

the given time between each chip preparation and

chip readout. An image named test is left on the
disk. Does not alter the current rootname or

sequence parameters.

zeros Make a series of imagetype="zero" exposures. Calls

observe to make a series of zero observations. The

shutter will not open, and the chip will be readout

immediately after the prepare cycle, giving an

exposure time of zero seconds. The zero exposure is
used to determine the bias level. Sometimes also

called a bias exposure.

10-4

detp ars Edit the detector parameters, see discussion below

instrparsEdit the instrument parameters, see discussion
below

obspars Edit the observing parameters, see discussion below

tel p ars Edit the telescope parameters, see discussion below

10.4 ccdacq parameters

As stated above, the action of the tasks in the ccdacq package is

determined by sets of parameters. These parameters are categorized

into four groups: detector parameters, instrument parameters,

observing parameters, and telescope parameters.

Detector parameters are associated with the CCD itself and the

portion of the CCD to be read.

Instrument parameters are not directly associated with the CCD

camera. They have to do with other parts of the instrumentation in

use which may be under IRAF control. These might include filters, or

other optical and electronic components. They will not be discussed

further in this document.

Observing parameters have to do with the nature of the next

observations and the files so created. See the detailed discussion

below and the on line help for more information.

Telescope parameters have to do with the position and motion

of the telescope. They are relevant if the telescope at the sight is

under IRAF control. They are not discussed in any greater detail in

this document. See the on line help or any documents specific to your

telescope for further information.

The various IRAF parameters are edited using the IRAF

parameter editing task 'epar'. Detector parameters may be edited by

entering the command 'detpars' or 'epar detpars', instrument

parameters may be edited by entering 'instrpars' or 'epar instrpars',

and so on for the 'obspars' and the 'telpars'. See the IRAF

documentation for more details on editing IRAF parameters.

10.4.1 Detector parameters

The detector parameters have to do primarily with the CCD and

the image format for the next acquisition. Each will be discussed

briefly in turn. These descriptions are essentially the same as those

included in the help file for detpars, with additional notes regarding

their use with this camera system.

10-5

firstcol : The first pixel to be read out of each row in relation
to the beginning of the serial register. The first
column on the CCD is considered column 1. If it is
desired to read a subregion of the CCD device, then
detcol may be set to a number other than 1. The
CCD in the STIS AIS1 camera has a total serial
dimension of 2048 pixels and so firstcol can be
anything from 1 to 2048.

lastcol : The last pixel to be read out of each row in relation

to the beginning of the serial register. The value of

this parameter must be greater than the value of

the firstcol parameter. This value may also range
from 1 to 2048.

firstrow :The first row that the user wishes to read out of the

CCDs parallel register. The first row on the CCD is
considered row 1. The CCD in the STIS AIS1 camera

has a parallel dimension of 2048, but the parallel

register is split and the device is read through two

ports. Each half of the CCD is clocked simultaneously

by the camera controller. Subregions of the device

must be centered around the CCDs parallel split.

This parameter may range, therefore, from 1 to
1024.

lastrow : This parameter represents the last row to be read

off the CCDs parallel register. As noted above, the

parallel register is split and the device is read out

of two ports, and subregions of the device must be

centered around the parallel split. Therefore, the

value of this parameter, though it may range from

1025 to 2048, must be equal to (2048 - firstrow). If
it is not, the camera software will abort the next

observation and issue an error message.

colbin : The column binning factor. Its value may range

from 1 to 65535. Numbers greater than 2048 will

not be useful however, as that is the total number

of columns on the CCD imager.

10-6

rowbin : This parameter represents the row binning factor.

Its value may range from 1 to 65535. Values

greater than 1024 will not be useful however, since

that is the maximum number of rows on each half

of the CCD imager.

preflash :The preflash time in milliseconds. At this time the

STIS AIS1 camera does not support a preflash.

gain: The gain factor.

detinfo : The name of a file to be read and copied into the

header. See the help for detpars for a more

complete description.

detcap : The name of the capabilities file, which describes

the devices which can be selected, their physical

characteristics, and the protocol used to contact

their server. This parameter should typically be set

to "ccdacq$detcap".

d etname : The device name corresponding to an entry in

the capabilities file. The detector name for the STIS
AIS 1 camera is "AIS 1"

10.4.2 Observing parameters

imagetype : The type of image being recorded. Choose

among: zero, dark, fiat, focus, comparison, standard,

object. The first two in the list do not open the
shutter. All others do.

exposuretime : The exposure integration time in seconds. This

will be passed to the camera controller through the

serial interface prior to acquiring the image.

objecttitle : The title to be given the object.

Like the camera controller, the ccdacq program

treats each image acquisition as a sequence of

acquisitions. Two parameters are associated with

10-7

this process. The first is the rootname for the files
which will be generated and the second is the
number of images in the sequence. The files will be
given names of the form rootnamel, rootname2,
etc.

rootname • The rootname is the name to be given to the IRAF

qmage or images to be recorded onto disk.

sequence • If sequence is not INDEF, this sequence number

will be appended to the rootname to form the

image name. This parameter will be incremented

by one at the end of the task. This IRAF parameter

is not to be confused with the camera parameter

NUM_IMAGES. When using the camera with IRAF,

NUM_IMAGES should be set to 1. This is typically

its default value. The ccdacq program will handle

each image acquisition in the sequence when the
camera is used with IRAF.

When focusing the telescope, the ccdacq package acquires a

series of exposures of the same object in a single CCD frame in order

to allow the user to more easily evaluate the variations in focus

quality without waiting for the CCD to be read between each

acquisition and without comparing multiple files. Three parameters
are associated with this feature. One, determines the number of

images to be acquired before reading the images off the CCD, the next

selects between moving the telescope or reverse shifting the image
across the CCD between exposures, and the last determines the

number of rows to reverse shift between images if reverse shifting is

selected. At this time the AIS1 does not support reverse shifting.

This is not a limitation of the camera controller, but has not been

coded into the IRAF interface software. At a future date it will be.

nfexpo : This is the number of exposures to take before

reading out. In this case, the exposure time is the

time for each individual focus exposure. This

parameter is used only if imagetype is focus.

shtype : Two options exist for acquiring the focus images. The
image. If the shift type is "detector", move the

image on the detector between focus exposures by

reverse shifting the chip. If the shift type is

10-8

"telescope", move the image by moving the
telescope. This parameter is used only if imagetype
is focus. As noted above, at this time the AIS1 does
not support reverse shifting of the image on the CCD
and the sbtype should be set to "telescope".

nrvrows : This is the number of rows to reverse vertical shift
between focus exposures. This parameter is used
only if imagetype is focus.

Three other parameters are associated with the
acquisitions. They are described in turn below.

focus

foetype : If the focus type is "telescope", move the telescope

focus between focus exposures. If the focus type is

"instrument", move the instrument focus. This

parameter is used only if imagetype is focus.

fstart : This is the starting focus value in a series of focus

exposures. It may be any value acceptable to

instrpars.instrfocus or telpars.telfocus. This

parameter is used only if imagetype is focus.

fdelta : If non-zero, fstart is taken as a numeric value, and

fdelta is added to it after each focus exposure, to

use as the next focus value. If zero, this parameter

has no effect. This parameter is used only if

imagetype is focus.

pixtype : The data type of the IRAF image to be recorded on

disk. Choose among: b, c, u, s, i, 1, r, d, x. These

correspond to unsigned byte, an IRAF char,

unsigned short integer, short integer, integer, long

integer, single real, double real, complex,

respectively.

observers : The names of the observers to be entered into the

image header.

comments : Any comment you wish to be recorded into the

image header. One line only.

10-9

comfile : The name of a file containing comments to be
written into the header. Each line of this file is
automatically formatted into a FITS COMMENT
record. You should not include the COMMENT
keyword in this file. Since this file is read at the
beginning of the readout, you may edit this file
anytime during the exposure.

obsinfo : The name of a file to be read and copied into the
header.

command • Any IRAF task you wish to be executed at the end
of the observe task. The first %s in the string is
replaced by the image name just recorded. Could
be used for post-processing, taping, or just
displaying.

verbose : Output to STDOUT, messages containing the name of
the IRAF image and other information as to what is
currently happening. Set to either 'no' or 'yes'.

debug:Output to STDERR, debugging information concerning
the operation of this task. Set to either 'no' or 'yes'.

10-10

11. UNIX Utility Programs

A small set of utility programs are provided for facilitating the
use of the camera while its connected to the Sun workstation. These

programs may be called from the UNIX command line to
communicate with the camera, set parameters, change voltage and
timing information, and to operate the camera. No functions are
provided for collecting the data from the camera. These programs are
meant primarily, for use in camera setup and functional testing of the
camera electromcs. The programs were written using the functions in
the 'C' language interface described in the next section of this
document.

11.1 AISsay

The AISsay program is used to issue a single line string of
ASCII text to the camera. The text string passed may contain one or
more camera commands. The string could define a new camera
command. See section 7 of this manual for details on creating new
camera commands. Most often, this program will be used to set a
camera parameter or adjust a camera voltage during test. This
program may be called from within the IRAF environment.

The string is passed on the command line as in :

AISsay "OPEN CLOSE READ"

which would cause the camera controller to open the shutter, close
the shutter, and read the data off the CCD.

11.2 AISfile

The AISfile program is used to pass an ASCII text file to the
camera controller through the serial interface on the VMEbus
interface cards. This file may contain any valid camera commands
and may include new camera command definitions. This program
might commonly be used to set the camera voltages and timing
tables to those values stored in a text file. Different text files could be
maintained for different CCDs or for different applications. This is a
maintenance operation that will not likely be of use to the average
operator. If desired, the entire camera software package can be
replaced or modified through the use of this utility.

11.3 AlSsetup

The AISsetup program is a simple menu driven program used
to set camera parameters and to download files containing voltage
and timng information. The program prompts the user for the
desired activity and then either opens a file from transmission using
an AISfile-like function, or prompts the user for parameter, values
and issues text strings to the camera to set those parameters m much
the same way that the AISsay program does.

11-1

D
12. 'C' Language Control Library

A set of 'C' language routines is provided to allow programs to

be developed which control and collect data from the camera. These

routines directly support the most commonly used functions in the

camera controller's command set. Other camera functions are

indirectly supported via a set of commands used for sending ASCII

text strings to the camera through the VMEbus interface.

The 'C' language camera interface consists of a set of routines

which may be used in a custom camera control program to operate

the camera. The functions may be broken down into four groups. The

first of these consistes of routines that perform some action on the

VMEbus interface card itself, without commanding the camera to do

anything. The second set consists of high level functions that cause

the VMEbus interface card to issue a command string to the camera

controller CPU and wait for a response. The third consists of a set of

functions used by those who would like to construct their own

command strings and send them to the camera controller. The fourth

set consists of low level functions that are called by the functions in

each of the three other sets. These deal primarily with the

handshaking between the Sun workstation and the CPU on the
interface card.

12.1 Function Reference

The following sub-sections of this document discuss the various

functions contained in the 'C' language function set. Each sub-section

describes one of the sets of functions mentioned above. They are

discussed in the following order: Interface Commands, High Level

Commands, Communications Functions, and Low Level Commands.

One VMEbus interface card is used for each port read off the

CCD. The STIS AIS1 camera uses two CCD ports and therefore, two

VMEbus interface cards. The funcitons in the Interface Command set

will likely be called at some point on both interface cards. They

accept as their first parameter the base address of the interface card

to be affected cast as a a character pointer.

12.1.1 Interface Functions

The interface commands are commands which operate not on

the camera, but on the VMEbus interface card itself. They include

12-1

functions to reset an interface card, to reset an image capture
address counter, to initialize the serial to parallel converter, to and to
read and write the bits of the "user I/O" port onthe interface card,
which is as yet unused in this camera system.

The first two fuctions are used to reset the Interface card, or to
halt the microntroller on the interface card. The first of these might
be called at the start of a program, the second is used on for
debugging purposes normally.

q

reset (controller)
reset one of the VME interface boards
char *controller : address of board to reset

halt (controller)
halt the microcontroller on the VMEbus interface
char *controller : address of board to halt

Where the camera data is captured in the cards memory is

determined by a counter on the card which may be reset to zero

using the function ag_init described below. Typically, this function

will be called before each image acquisition. If it is not called, then

the next image will be collected into the succeeding memory

locations. This feature may be used to allow the collection of a series

of images into the VMEbus memory before moving the data off the

card.

q

ag_init (controller)
reset the "address generator" PLD on one of the VMEbus interface cards
char *controller : address of board on which to reset the address

The VMEbus interface cards recieve the camera data in a serial

format and convert that to a parallel form on the card. A

programmable logic device controls the conversion.

spcon_init (controller)
initilize the serial to parallel converter on one of the VMEbus interface

cards.
char *controller : address of board on which to operate

spcon reset (controller)
reset the serial to parallel converter on one of the VMEbus interface cards
char *controller : address of board on which to operate

|
12-2

The interface cards contain an eight bit "user I/O" port which

may be read or written using the following routines. This port could

be used as a trigger to external equioment, to control mechanical

devices such as filter wheels, etc. As of 12/92, they are not used for

any purpose inthe STIS AIS1 camera system.

io_read (controller)
read the TrL data present on the user I/O port of one of the interface card
char controller : address of board on which to read the I/O port
returns : char the data read on the input pins

io_write (controller,value)
write to the output bits of the user I/O port on one of the interface cards
char *controller : address of board on which to write the user I/O port
char value : the vaue to write

12.1.2 High Level Functions

The high level commands are use to initaite action by the

camera controller electronics. They are generally commands that

cause the VMEbus onterface card to issue an ASCII text string to the

camera and wait for a reply. The cameras response is captured as an

ascii text string in the "text input buffer" on the interface card. The

user's programs may read this buffer if it is desired tomonitor the

camer's responses. Many of the commands will also cause the camera

to produce image data. This data will be captured by the interface

card into the image buffer at the place pointed to by the address

counter. Most of the commands here call the ag_initO function to

reset the adress pointer before issuing the camera commands.

cam_restart (controller)
Issues a series of command strings to the camera controller which cause it

tO perform a restart.
char *controller : address of board to use for communication

set_param (controller, offset,value)
Set a camera parameter.
char *controller : address of board to use for communication

unsigned short offset : the parameter's parameter table offset
unsigned short value : the new value for the parameter

get__format (controller)
get a list of the current settings of the system parameters.

char controller : address of board to use for communication

set_format (controller)
initialize the sequencer with the current format params.
char controller : address of board to use for communication

12-3

set_exposure_time(controller,exptime)
char*controller:addressof boardto usefor communication

cam_write(controller,address,datum)
write avalueto asequenceraddress.
char*controller: addressof boardto usefor communication
unsignedshortaddress: theaddressto write to
unsignedshortdatum: thedatumto write

The camera may perform a continuous clear operation between
exposures to eliminate dark current. The camera may perform clock
recombination anti blooming during integrations to prevent image
degradation due to overexposed areas. The following functions are
used to select or deselect these features.

cisc_on(controller)
Turn oncontinuousclearingof theCCD betweenimageacquisitions.
char*controller•addressof theboardto usefor communication

cisc_off (controller)
Turn off continuousclearingof theCCD betweenimageacquisitions.
char*controller" addressof boardto usefor communication

anti_bloom_on(controller)
enableclockrecombinationanti-blooming
char*controller" addressof boardto usefor communication

anti_bloom_off(controller)
disableclockrecombinationanti-blooming
char *controller" addressof boardto usefor communication

The AIS1 camera uses a dual slope integrator based analog to
digital conversion scheme on the CCD data. The length of time that
the integrator integrates each pixel detertmines the pixel throughput
rate as well as the gain of the electronics. This is why these three
gain control functions also affect the camera readout speed. The exact
sensitivity of the system will depend on a variety of factors including
the CCD output FET operating point voltages. This is why these
functions make no reference to an actual gain figure. The cameras
gain fctor should be measured for an accurate figure.

AIS_gain_lo(controller)
Setstheconversionrateto 40kpix/sec.
char*controller" addressof boardto usefor communication

MS_gain_mid (controller)

12-4

Setstheconversionrateto 20kpix/sec.
char*controller" addressof boardto usefor communication

AIS_gain_hi(controller)
Setstheconversionrateto 10kpix/sec.
char*controller" addressof boardto usefor communication

The CCD temperature is regulated. A program may
mobitor the CCD temperature via the following two functions.

CCD_temp(controller)
querythetemperatureof theCCD.
char*controller" addressof boardto usefor communication

set__temp(controller,value)
setthedesiredoperatingtemperaturefor theCCD.
char*controller: addressof boardto usefor communication
charvalue: desiredtemperature

set and

Two functions are provided to control the camera's shutter.
Normally, one of the higher level image acquisition commands such
as obs(), described below, will be called and the camera controller
will take care of the shutter control during the acquisition. These
functions are used by the programmer who wishes to control the
camera operation at a slightly lower level.

oshut(controller)
Opentheshutteron thecamera.
char*controller" addressof boardto usefor communication

cshut(controller)
Closetheshutteron thecamera.
char*controller:addressof boardto usefor communication

A set of low level charge shifting and pixel conversion
commands are provided. These include functions to read or discard
groups of CCD pixel and columns. Using these routine, the
programmer may build custom readout sequences.

pix_bin (controller,npix)
Bin anumberof pixels into theCCD summingwell.
char*controller:addressof boardto usefor communication
unsignedshortnpix • thenumberof pixelsto bin

row_bin (controller,nrows)
bin anumberof rowsinto theCCD serialregister.One

char *controller:addressof board to use for communication

unsigned short nrows • the number of rows to bin

12-5

pix_discard(controller,npix)
discardanumberof pixelsin theCCD serialregister.
char*controller:addressof boardto usefor communication
unsignedshortnpix : thenumberof pixelsto discard

row_discard(controller,nrows)
discardanumberof rowsin theCCD parallelregister.
char *controller:addressof boardto usefor communication
unsignedshortnrows: thenumberof rows to discard

p__read(controller,npix)
readanumberof pixels in theCCDserialregister.
char*controller:addressof boardto usefor communication
unsignedshortnpix : thenumberof pixelsto read

row_read(controller,nrows)
readanumberof rowsin theCCD parallelregister.
char*controller:addressof boardto usefor communication
unsignedshortnrows: thenumberof rows to read

Four functions are provided for clearing the CCD, integrating
charge, and reading the CCD image data. They maybe used by the
programmer to control the CCD image acquisition ata moderately high
level. Most often the commands in the following section will be used
to allow the camera controller to handle more of the details of image
acquisition.

clear(controller)
clearall chargeoff theCCD.
charcontroller: addressof boardto usefor communication

integrate_dark(controller)
integratedarkcurrentontheCCD device.
charcontroller: addressof boardto usefor communication

integrate_light(controller)
integratelight ontheCCD device.
char*controller: addressof boardto usefor communication

readout(controller)
readtheimageoff theCCDbasedon thecurrent
charcontroller: addressof boardto usefor communication

Four functions are provided for acquiring images from the
camera in a totally self contained fashion. Using these commands
allows the programmer the easiest method of image acquisition. The
camera controller takes care of the CCD clearing and exposure as well
as reading the data off the CCD using the current format parameters.

12-6

bias(controller)
generatein imageof theCCDwith nochargeon it.
char*controller : addressof boardto usefor communication

expose(controller,exptime)
this functionis redundantto theOBScommandbelow,
char*controller : addressof boardto usefor communication
unsignedlong exptime : exposure time, in milliseconds

dark (controller,exptime)
this function is called to generate an image of the CCD
with dark current.
char *controller : address of board to use for communication

unsigned long exptime : exposure time, in milliseconds

obs (controller,exptime)
this command generate an object exposure
char *controller : address of board to use for communication

unsigned long exptime : exposure time, in milliseconds

12.1.3

These functions

camera. They are use

command that the

send_string() is used

more information.

Communications Functions

are used to send and receive text from the

when the 'built-in' commands do not include a

programmer would like executed. Normally

for this purpose. See the 'C' source code for

send_f'fle (controller,filename)
send an ASCII text file to the camera.
char *controller : address of board to use for communication
char *filename : name of the file to send

send_string (controller, theString)
send an arbitrary string to the camera.
char *controller : address of board to use for communication

char *theString : the string to send

wait_OK (controller)
wait until an 'OK' response has been received from the camera
char *controller: address of board to use for communication

wait_CR_LF (controller)
wait until an carriage return line feed pair has been recieved from the

camera

char *controller: address of board to use for communication

flush_buffer (controller)
char *controller : address of board on which to flush the text input buffer

12-7

read_cam__buffer(controller)
char*controller• addressof boardreadthetextfrom
fetchall thecharactersin theserialinputbufer.

send_cam_char(controller,achar)
char*controller" theaddressof theboardto sendcharthrough
charachar• the character to send

get_a_char (controller)
char *controller: address of board to fetch the character from

fetch a character from the serial input buffer.

12-8

D

D

13. Programmable CCD Clock Timing

The AIS1 camera generates the CCD clock timing, that is all

sequences of parallel and serial clock edges, and analog processor

control signals, with a set of state tables. In doing so, the nature of

these sequences may be controlled by placing appropriate

information into the tables. Software tools are provided at various
levels to allow the user to do so.

13.1 Timing Tables

The camera timing is determined by the variables stored in the

following state tables, two tables are provided for each sequence.

these include the actual states; i.e. the values to be written into the

latches on the clock cards; and a set of "waits" that determine how

long the sequencer should pause between states, four sequences are
stored :

Parallel Clock Sequence

Serial Clock Sequence

Analog Processing Control Sequence

Clock Recombination Anti-Blooming Sequence

13.1.1 Parallel Clock Timing

The sequence of the CCD parallel clocks is determined by the

entries in the parallel clocking state tables. There are two, one for

one half of the CCD and the other for the other half. The two halves of

the CCD are clocked toward their respective output ports normally,

but may be reversed for full frame readout through either port by

changing the entries in the tables or by setting the parallel clocking

direction parameters appropriately.

The parallel clock timing tables are 32 entries long. Normally, a

CCD clocking sequence can be achieved in 6 or 8 entries. A variable is

available for setting the number of states that are actually in use.

This variable N_PAR_STATES is referred to by the sequencer, and
that number of states are read from the table and written to the

latch on the clock card that controls the parallel clocks.

The tables contain 9 bit values. Two bits each are used to

control the four parallel clock phases provided. And one bit controls

the transfer gate. Two bits are required to control the parallel clocks

because tri-level clocking capability is provided.

The FORTH code refers to the parallel clocking tables as

CAM0_PAR_STATE and CAM1 PAR_STATE. The entries are accessed

by preceding the table name with the desired index. For example,

13-1

12 CAM0_PAR_STATE @

will fetch the value of the 12th element in the

CAM0_PAR_STATE.

Appropriate table entries maybe generated

together the following FORTH constants.

table named

by 'OR-ing'

00 CONSTANT PI_LO

01 CONSTANT PI_MID

02 CONSTANT PI_HI

00 CONSTANT P2_LO

04 CONSTANT P2_MID

08 CONSTANT P2_HI

00 CONSTANT P3_LO

i0 CONSTANT P3_MID

20 CONSTANT P3_HI

00 CONSTANT P4_LO

40 CONSTANT P4_MID

80 CONSTANT P4_HI

0 CONSTANT TG_LO

i00 CONSTANT TG_HI

The FORTH word ' I ' is used to perform a bitwise 'OR' operation

on two numbers.

For example, the FORTH command string,

PI_LO P2_HI [P3_LO I P4_LO I TG_LO I 3 CAM0_PAR_STATE '

will install into position 3 in the paralel clock table associated with

CAM0 a state with only parallel clock phase 2 held high. The actual

voltage produced for each clock in each of its states is determined by

the settings of the CCD clock rail DACs described in greater detail in

section 7 of this document.

When moving charge in the parallel direction on the CCD, the

camera controller steps through the tables reading the value found at

each location and writing that value to the parallel clock control latch

on the clock card. If the user value of the CAM0_PDIR or CAMI_PDIR

parameter is 0, then the sequemcer starts reading the table at

location zero and steps forwards. If one or both of them have a value

of 1, then that sequence is read backwards, with the first location

being determined by referring to the appropriate table length

parameter.
The camera controller pauses between each step in the table.

The amount of time that it will pause is determined by the values

13-2

D
stored in another table. The table is reeferred to as PAR_DELAY and

its elements may be accessed in the same way as the state tables.

The table contains numbers which representthe number of lOOns

'NOP' instructions the sequencer should execute before writing the

next state to the latch. A different delay may therefore be associated

with each state inthe table. Normally it is not necessary to adjust the

delays individually, and a single value may be desired for all the

delays. The function SET-PAR_DELAYS may be used to set all the
entries in the table to the same value.

To display the contents of the parallel state tables, one may

execute the FORTH function SHOW_PAR_STATES, which will produce

a formatted ASCII text stream listing the states in the table.

13.1.2 Serial Clock Timing

The sequence of the CCD serial clocks is determined by the

entries in the serial clocking state table. The two halves of the CCD

are clocked simultaneously using the values in the single table. This
done to assure that the serial clocks run with a minimum of

overhead time wasted. No delays are executed by the sequencer

when writing the serial clock states to the serial control latches on
the clock cards.

The serial clock timing tables are 32 entries long. Normally, a

CCD clocking sequence can be achieved in 6 or 8 entries. A variable is

available for setting the number of states that are actually in use.

This variable N_SER_STATES is referred to by the sequencer, and

only that many states are read from the table and written to the
latch.

The tables contain 8 bit values. Two bits each are used to

control the four serial clock phases provided. Two bits are required

to control the parallel clocks because tri-level clocking capablity is

provided.

The FORTH code refers to the serial clocking table as

SER_STATE. The entries are accessed by preceeding the table name

with the desired index as was shown for the parallel clocking tabless
above

As for the parallel clocks, appropriate table entries maybe

generated by 'OR-ing' together the following predefined FORTH
constants.

00 CONSTANT SI_LO

01 CONSTANT SI_MID

02 CONSTANT SI_HI

00 CONSTANT S2_LO

04 CONSTANT S2_MID

13-3

08 CONSTANT S2_HI

00 CONSTANT S3_LO

i0 CONSTANT S3_MID

20 CONSTANT $3 HI

00 CONSTANT $4 LO

40 CONSTANT $4 MID

80 CONSTANT $4 HI

No provision is made for running the serial clocks backwards

except by changing the sequemce of states in the table.

13.1.3 Analog Processor Control

The analog processor state table is a little different than the

parallel or serial state tables. The analog state table determines the

equence in wjhich the various parts of the analog signal procsessing

chain are switched. The analog processor is constructed in the form

of a dual slope integrator. There are a very limited number of ways

in which this state table may be effectively configured. The primary

reason for providing the programmable timing approach for the

analog procesor is so that entriely different analog procesing schemes

could be supported by modifying the harware in the system, while

not requireing a change in the software. As long as the analog

processing chain is configured as it was delivered, the states in the

table will retain essentially the same sequence.

The table is supported in the same way as the parallel and

serial timing tables. The table is referrred to as ANA_STATE, and the

individual elements are referred to by index in the same way.

Of more interest to the programmer is the table of delays

between analog processing states. The delays during which the

integration takes place are the most important. These two should be

the same and will determine the gain of the integrator and therefore

of the system. The time during which the integrator is reset should

be long enough to assure that the integrating capacitor is fully reset.

A minimum length of 6 usec is recommended. For precise adjustment

of the analog processor timing it is recommended that the waveforms

be examined on an oscilliscope, and the number in the table adjusted

until the appropriate timing is acheived.

The analog procesor timing is not something that the user will

ordinarily need to modify, and there are convienient functions

available in the FORTH program to setthe integrator values to achieve

particular camera operating speeds.

The length of the analog processor control table is fixed at 14.

There is a fixed pattern with which they are executed and anyone

modifying the table entries must be aware of this. The first two

13-4

states are written before the CCD reset pulse goes high and then low

again. Then the next two are written. After that state pair, the serial

clocks run, shifting the pixels to be read into the summing well. The

next five states are then written. Then the summing well signal is

pulsed low and then high, pushing the pixel charge into the output of

the CCD. Then five more states are output. The sequence then starts

over for anymore pixels to be converted.

The FOTH function SHOW-ANA_STATES can be called to

examine the contnets of the analog control state table.

Entries for the table can be generated by OR-ing together the

following FORTH constants.

1 CONSTANT RIN

0 CONSTANT !RIN

2 CONSTANT DCR

0 CONSTANT !DCR

4 CONSTANT SA2

0 CONSTANT !SA2

8 CONSTANT SAI

0 CONSTANT !SAI

i0 CONSTANT CTC

0 CONSTANT !CTC

20 CONSTANT SEN

0 CONSTANT !SEN

40 CONSTANT 16B

0 CONSTANT [16B

integrator reset

D.C. restore

sample period 2

sample period 1

command to convert

send data trigger

use slow speed 16 bit converter)

13.1.4 CiockRecombination Anti-Blooming

The AIS1 camera is capable of performing clock recombination

anti blooming during image integrations. This anti-bloming is

accomplished by switching the parallel clocks while integrating

charge. The sequence in which they are clocked to accomplish this is

stored in a table named AB STATE and is indexed in the same way
as the other tables discussed in this document. There is also an

AB_DELAY table asociated with this clocking. It operates the same as

the delay table associated with the parallel clocks.

The FORTH function SHOW-AB_STATES may be used to

generate a list of the states currently stored in the table.

The same FORTH constants as are OR-ed to create the parallel

state table may be used to create the AB_STATE table.

13.2 Filling the Timing Tables

The timing tables do not often need to be modified. They will

need modification whe a different type of CCD is installed or if the

analog processor is modified greatly. If the user wishes to

13-5

experiment with CCD clocking schemes to optimize the operation of
the CCD then they will need to know how to fill the tables.

A simple terminal may be connected to the camera controller

and used to update the tables stored in the controllers EEPROM.

The easiest way to fill a particular entry in a timing table is to

use the AISsay utility. This utility described elsewhere in this

document may ne used to transmit a one line text command to the

camera controller through the VMEbus interface card. For example,
typing

AISsay "PI_LO P2_HI I P3_LO I P4_LO I TG_HI I 6 CAMI_PAR_STATE !"

at the UNIX command line,will install into position 6 in the parallel

clock table associated with CAM1 a state with parallel clock phase 2

and the transfer gate held high.

Typically, the contents of an entire table will need to be

modified at once. This is most conveniently done using the AISfile

utility, also described elsewhere in this document. In this way a

simple ASCII text file may be maintained and sent to the camera at
once.

The AISsetup utility also offers the option of sending a text

file to the camera for this purpose. It uses a default filename of

"AIStiming", and is primarily intended to allow the user to put the

states back in their original configuration easily. If the "AIStiming"

file has been modified, then it could contain anything.

13-6

13.3 Timing Table Example

13-7

AIStiming
Mon, Sep 21, 1992 4:07 PM

E_.... ,P_L

_,- [[_PAR STATES !

P! MID P2 LO OR P3_LO OR P4_LO OR TG LO OR

Pl :41D P2 LO OR P3 H! OR P4_LO OR TG HI OR

PI LO P2 LO OR P3_HI OR P4 LO OR TG HI OR

P1 LO P2_MID OR P3 HI OR P4_LO OR TG HI OR

_! LO P2 .MID OR P3 LO OR P4 LO OR TG_LO OR

PI--41D P2 MID OR P3 LO OR P4 LO OR TG LO OR

Pi_MID P2 LO OR P3 LO OR P4 LO OR TG LO OR

P!_MID P2_LO OR P3 LO OR P4_LO OR TG LO OR

PI_M!D P2 LO OR P3 LO OR P4 LO OR TG LO OR

Pi_:.flD P2_LO OR P3_LO OR P4 LO OR TG LO OR

P! :41D P2_LO OR P3_LO OR P4 LO OR TG_LO OR

P!_MID P2_MID OR P3_LO OR P4 LO OR TG_LO OR

P! LO P2 MID OR P3_LO OR P4 LO OR TG_LO OR

P! LO P2_MID OR P3_HI OR P4 LO OR TG H! OR

P1 LO P2 LO OR P3_HI OR P4_LO OR TG__'_i OR

Pi MID P2 LG OR P3 HI OR P4 LO OR TG HI OR

P!_MID P2 LO OR P3_LO OR P4 LO OR TG LO OR

P-_.±D P2_LO OR P3 LO OR P4_LO OR TG LO OR

PI--dID P2 LO OR P3 LO OR P4 LO OR TG LO OR

Pl MID P2 LO OR P3 LO OR P4_LO OR TG LO OR

_0@ 0 P_R_DELAY !

800 i PAR_DELAY !

800 2 PAR_D_..,Ay {

8O0 3 PAR_D___Ay

800 4 PAR_DELAY !

800 5 PAR_DELAY !

800 6 P_J{ DELAY !

800 7 PAR DELAy !

800 8 PAR DET_ky

800 9 PAR_D__Ay ,

0 C_IM0 PAR STATE

i CAM0 PAR STATE

2 CAM0 PAR STATE

3 CAM0 PAR_STATE

4 CAM0 PAR STATE

5 CAM0_PAR STATE

6 CAM0_PAR_ETATE

7 CAM0_PAR_STATE

8 CAM0_PAR_STATE

9 CAM0_PAR_STATE

0 CAM1 PAR_STATE

I CAMI_PAR_STATE

2 CAM1 PAR_STATE

3 CAM1 PAR_S_ATE

4 CAM1 PAR_STATE

5 CAM1 PAR _TATE .

6 CAMI PAR STATE .

7 CAM1 PAR_STATE

8 CAMI PAR STATE

9 CAM1 PAR STATE

!0 N_SER_STATEE !

S1 HI $2 HI OR S3_LO OR $4 LO OR

S1 HI $2 LO OR $3 LO OR $4 LO OR

S1 HI $2 LO OR S3_HI OR $4 LO OR

S1 LO E2 LO OR S3_HI OR S4_LO OR

SI_Lo S2 HI OR S3_HI OR S4_LO OR

S1 LO $2 HI OR S3_LO OR $4 LO OR

EI_LO S2_HI OR $3_L0 OR $4 LO OR

S!_LO $2_HI OR $3 LO OR $4 LO OR

El LO E2 HI OR $3 LO OR $4 LO OR

SI_LO S2_HI OR $3 LO OR S4 LO OR

0 SER STATE

1 SER STATE

2 SER STATE

3 SER_s_FATE

4 SER__ATE

5 SER STATE

6 EER_ETATE

7 SER STATE

8 SEP_STATE

9 £ER S_TATE

14 N_ANA STATES !

RIN DCR OR !SAI OR !SA2 OR {CTC OR SEN OR 16B OR 0 ANA STATE !

R!N DCR OR !SAI OR !SA2 OR !CTC OR !S_N OR 16B OR i ANA STATE [

RiN DCR OR [SAI OR !SA2 OR !CTC OR E_N" OR 16B OR 2 ANA__STATE !

RIN DCR OR !SAI OR !EA2 OR [CTC OR SEN OR 16B OR 3 ANA STATE !

RIN DCR OR !SAI OR !SA2 OR !CTC OR SEN OR 16B OR 4 ANA STATE !

RIN !DCR OR !SAI OR !SA2 OR !CTC OR SEN OR 16B OR 5 ANA STATE !

!RIN !DCR OR {EAI OR [SA2 OR !CTC OR SEN OR 16B OR 6 ANA STATE !

!RIN !DCR OR SAI OR !SA2 OR !CTC OR EEN OR 16B OR 7 ANA_STATE }

!RIN !DCR OR !SAI OR !SA2 OR !CTC OR SEN OR 16B OR 8 ANA STATE !

!RIN !DCR OR !SAI OR SA2 OR !CTC OR SEN OR 16B OR 9 ANA_STATE !

!RIN [DCR OR !SAI OR !SA2 OR !CTC OR SEN OR 16B OR I0 ANA STATE !

!R!N }DCR OR !SAI OR !SA2 OR [CTC OR SEN OR 16B OR ii ANA_STATE !

!RIN !DCR OR !SAI OR }SA2 OR CTC OR SEN OR 16B OR 12 ANA_STATE !
!RIN !DCR OR !SAI OR !EA2 OR {CTC OR SEN OR 16B OR 13 ANA_STATE !

1 0 ANA DELAY

1 1 ANA DELAY

1 2 ANA_DELAY

i 3 ANA DELAY !

AIStiming Mort, Sep 21, 1992 4:07 PM 2

1 4 ANA DELAY

12 S ANA_DELAY

1 6 ANA_DELAY

(ana DELAY 7 and 9 are the dual slope integration times]

157 7 ANA_DELAY !

1 8 ANA DELAY

157 9 ANA DELAY

1 i0 ANA DELAY

1 ii ANA DELAY

1 12 ANA DELAY

SO 13 ANA_DELAY !

i0 N_ANTI-BLOOM STATES

P1 LO P2 LO OR P3 LO OR P4 LO OR TG LO OR

P1LO P2_LO OR P3 LO OR P4 LO OR TG_LO OR

P1 LO P2_LO OR P3 LO OR P4 LO OR TG LO OR

P1 LO P2_LO OR P3 LO OR P4_LO OR TG_LO OR

P1 LO P2_LO OR P3 LO OR P4_LO OR TG_LO OR

P1 LO P2_LO OR P3_LO OR P4 LO OR TG_LO OR

P1 LO P2_LO OR P3 LO OR P4_LO OR TG LO OR

PI_LO P2_LO OR P3 LO OR P4_LO OR TG_LO OR

P1 LO P2_LO OR P3_LO OR P4 LO OR TG LO OR

P1 LO P2_LO OR P3 LO OR P4_LO OR TG_LO OR

200 0 ANTI-BLOOM_WAIT

200 1 AA_I-BLOOMWAIT

200 2 _/JTI-BLOCMNAIT

200 3 ANTI-SLOOMWAIT

200 4 ANTI-BLOOM_WAIT

200 5 ANTI-BLOOM_WAIT

200 6 ANTI-BLOOM_WAIT

200 7 ANTI-BLOOM_WAIT

200 8 ANTI-BLOOM_WAIT

200 9 ANTI-BLOOM_WAIT

0 ANTI-BLOOM STATE !

1 ANTI-BLOOM STATE !

2 ANTI-BLOOM STATE {

3 ANTI-BLOOM STATE !

4 ANTI-BLOOM STATE !

5 ANTI-BLOOM STATE !

6 ANTI-BLOOM STATE !

7 ANTI-BLOOM STATE !

8 ANTI-BLOOM STATE !

9 ANTI-BLOOM STATE !

14. Programmable CCD Voltages

The AIS1 camera allows the user or a control program to manipulate

the CCD clock voltages through software. All the CCD voltages may be

adjusted over a wide range. This allows the voltages to be quickly and

predicably varied to either test the operational parameters of a specific

CCD device, or to optimize the camera's setup for a particular CCD with

known parameters. Since the STIS AIS1 camera is a dual port system,

separate voltage adjustments for either portion of the CCD are available

where appropriate. Exceptions are noted below. In the development of the

system, certain decisions were made regarding which voltages should be

programmed and which need not be. These judgements are also discussed
below.

14.1 CCD Clock Rails and DC potentials
The CCD clocks are adjusted by a set of eight bit voltage output

digital to analog converters (DACs) located on the clock card. The DAC

outputs range from 0.0 volts to 5.0 volts, approximately. These voltages

are the scaled to the range appropriate for the particular clock rail in

question. In order to maintain flexibility in the system, most of the

voltages may be adjusted over the range of -12.5 volts to +12.5 volts..

14.1.1 CCD Parallel Clocks

The CCD parallel clocks are adjusted by the setting of three DACs.

Three voltages are provided in order to support either virtual phase

devices (which are becoming increasingly rare) or to optimize the pixel

capacity of devices operated inthe MPP mode. The three available voltages

and their ranges are shown below.

parallel clock low

parallel clock midrange

parallel clock high

-12.5/+12.5

-12.5/+12.5

-12.5/+12.5

In the STIS camera, the Tektronix M745A CCD is typically operated

inthe MPP mode and clock phases 1 and 2 are switched between low and

midrange while phase 3, under which the MPP implant resides, is switched

from low to high. In this way the upper rail of phase 3 may be

independently controlled to optimize the CCD's "full well capacity". The

actual clocking of the various phases depends on the CCD timing

information, which is also programmable and discussed elsewhere.

Separate clock voltages for the parallel to serial transfer gate are provided

and thier ranges are shown below.

14-1

transfer gate low
transfer gate high

-12.5/+12.5
-12.5/+12.5

Tri-level clocking is not implemented on the transfer gate. It is not deemed
neccessary.

14.1.2 CCD Serial Clocks and Suming Well

The CCD serial clocks also support tri-level clocking, but here it is

primarily for use with virtual phase devices, since MPP mode is not

usually an option on the serial register. The available voltages and their

ranges are shown below.

serial clock low

serial clock midrange

serial clock high

-12.5/+12.5

-12.5/+12.5

-12.5/+12.5

Separate voltages are available for the summing well, although in
most cases it is clocked at the same potentials as the serial register. Tri-

level clocking is not supported on this gate. These voltages and their

ranges are shown below.

summing well low

summing well high

-12.5/+12.5

-12.5/+12.5

14.1.3 CCD Reset Gate and Last Gate

The CCD reset gate is supported with a pair of voltages for high and

low. The switch which actually clocks the CCD reset gate is located in the

camera head for maximum imunity to noise and potentially damaging

votage spikes. The CCD reset gate is a very sensitive point on the device

and very susceptible to noise pickup. A programmable voltage for the

lower rail of the reset gate is provided on the clock card and fed into the

camera head, but it was found that for optimum noise performance, it was

best to tie this potential to a very clean ground. Therefore, adjusting the

reset gate low voltage has no affect whatsoever on the system.

reset gate low

reset gate high

0.0/+15.0

0.0/+15.0

The CCD serial register is terminated by a single gate that acts as a

barrier between the summing well and the output. This gate is known by a

variety of names such as "serial transfer gate", "output gate", and "last

gate". In the hardware and software of the AIS1 camera, this gate is

14-2

named the "last gate" and is adjutable over a reduced range. Whereas the
serial and parallel clocks may be adjusted from -12.5V to +12.5 volts, the
last gate may be adjusted from -5.0V to +5.0V. This design decision was
made for two reasons. The first is that it was not thought that the last gate
would require potentials outside of this range, and the second was to allow
a finer adjustment of the potential with only 0.04V change per DAC unit.
The last gate potential range is shown below.

last gate -5.0/+5.0

14.1.4 CCD Output FET Potentials

Two DC potentials that can have a very dramatic effect on the

operation of the CCD output amplifier are the reset FET and output FET

drain voltages. They determine the "operating point" of the amplifier and

have a very great effect on gain and linearity of the amplifier. These two

voltages need to be raised to greater potentials than the other signals in

the system and are therefore generated a little differently. The voltage out
of the DAC is buffered by an operational amplfier operating off a single

sided supply of approx. +28 VDC. The design of the circuit allows the

voltages to be raised to +20 and +25 V respectively. This allows the

operation of all CCDs in widespread use today including those with "lightly

doped drain" output amplifiers. The STIS 2048 CCD is such a device.

Separate reset drain (VRD) and output drain (VOD) voltages are

provided for the two amplifiers on the CCD, but experience shows that

there should be little or no potential between the various VRD voltages

used on a single CCD. For this reason, although both clock cards have the

circuitry necessary for producing the VRD signal and the software refers to

VRD potentials for both amplifiers, only one voltage is actually applied to

both amplifiers. It is the VRD signal produced on the clock card for

amplifier 1 which is used. Adjusting this voltage will affect the operation

of both amplifiers, while adjusting the other will have no effect on the

system. The signal names and their ranges are shown below.

CCD reset drain (VRD)

CCD output drain (VOD)

+5.0/+20.0

+5.0/+25.0

14.1.5 Other Clocks and Potentials

The AIS1 socket card provides a variety of options, one of which is

the use of a "clamp" circuit which discharges the AC coupling capacitor

used in the very first stage of amplification off the CCD. The use of this

circuit is selected by installation of the appropriate components into the

14-3

circuit board. The camera was built to include this circuit since it has been
proven to be effective. As this option was not originally planned for, there
was no signal provided to operate the FET switch which is used to connect
the capactitor to ground. Therefore, one of the extra clock switches
provided on the clock card was used to toggle the switch which requires a
signal that swings from somewhat less than -10.0 volts to 0 volts, with the
higher voltage closing the switch. The voltages for this switch do not need
to be adjusted and in doing so incorrectly (i.e. >0.6 volts) can result in
damage to the FET. For this reason, the rails were hard wired to -15.0 V
and ground. Therefore, although extra switch 1 is used for this circuit, the
programmable voltages associated with it are not, and adjusting them has
no affect on the camera. In some other configuration, these voltages may
be used for some other purpose, and are therefore listed below along with
their ranges.

(clamp signal)
extra clock 2 high
extra clock 2 low

-12.5/+12.5
-12.5/+12.5

(unused)
(unused)

Another option provided by the AIS1 socket card is the selection of
either a simple load resistor or a current source as the load seen by the
CCD output FET. There are some times when a current source can provide a
slightly higher gain and therefore lower noise in the CCD readout. The
AIS1 camera provides a programmable current by providing a
pragrammable voltage which is applied to the base of an emitter follower
circuit. The emitter load, a resistor, converts this voltage to a current
through the tansistors collector which is connected to the CCD output FET's
source. The CCD load for each side of the camera may be independantly
selected by jumpers J3 and J6 on the socket card. This selection determines
whether the CCD output drives the load resistor or the current source.
Another jumper selection, jumpers J2 and J5, determine whether the
curent sources will have a fixed current or be controlled by the
programmable voltage. The current source was not part of the original
design of the caera electronics and represents another use of one of the
extra clocks that were designed into the system. The current source
transistor's base is tied to extra clock 2. The range of the programmable
voltage is shown below.

(current source)
extra clock 2 high
extra clock 2 low

-12.5/+12.5
-12.5/+12.5

14-4

At the time that the AIS1 camera design was first being
implemented, it was decided that all CCD clock rails and DC potentials
should be programmable. This philosophy was carried through the later
parts of the design and was implemented to the extent deemed
advantageous to the best operation of the CCD. One voltage which was
provided as a programmed voltage but not used as such in the final system
is the CCD substrate. A programmable voltage was provided for this
potential, and is connected to the camera head feedthrough connector, but
is not used in the circuit. It was learned through experimentally that this
potential should be tied to a good ground point in the circuit, and the CCD
substrate actually provides the center point for the "star" grounding
system in the final AIS1 camera configuration. The voltage and it's range is
shown below pimarily for completeness. Adjusting the "substrate" voltage
has no affect whatsoever on the system.

substrate -5.0/+5.0

There are two additional clocked signals available which are unused
in the STIS AIS1 camera system, but which could be of some use with a
different CCD or some other circuitry. They are provided for future use and
changing their values will have no affect on the system as it stands. These
voltages are listed below.

extra switch 3 low
extra switch 3 high
extra switch 4 low
extra switch 4 high

-12.5/+12.5
-12.5/+12.5
-12.5/+12.5
-12.5/+12.5

14-5

Table 14.1 - AIS1 Camera Programmable Voltages

voltage

parallel clock low

parallel clock midrange

parallel clock high

transfer gate low

transfer gate high
serial clock low

serial clock midrange

serial clock high

summing well low

summing well hig

reset gate low

reset gate high

last gate
reset drain

output drain
substrate

extra switch 1 low

extra switch 1 high
extra switch 2 low

extra switch 2 high

extra switch 3 low

extra switch 3 high

extra switch 4 low

extra switch 4 high

min max comment

-12.5 +12.5

-12.5 12.5

-12.5 12.5

-12.5 12.5

-12.5 12.5

-12.5 12.5

-12.5 12.5

-12.5 12.5

-12.5 12.5

-12.5 +12.5

0 +15.0 (unused)

0 15.0

-5.0 5.0

+5.0 20.0

+5.0 25.0

-5.0 5.0 (unused)

-12.5 12.5 (unused)(clamp)

-12.5 12.5 (unused)(clamp)

-12.5 12.5 (unused)(current

-12.5 12.5 (unused)(current

-12.5 12.5 (unused)

-12.5 12.5 (unused)

-12.5 12.5 (unused)

-12.5 12.5 (unused)

source)

source)

14-6

14.2 CCD Protection Circuitry

Since the various programable voltages on the clock cards are

generated by digital to analog converters whose power-up status is

indeterminate, it was decided that an effort should be made to assure that

the voltages when randomly assigned, would not in any way damage the

CCD device. Two different approaches were taken in the design f the

system to make this assurance. The first is that of limiting the range of the

various voltages so that there could not be excessive potential across any

of the gates. The CCD substrate was therefore limited to -5/+5 volts so that

there could be no more than 17.5 volts from any parallel or serial clock rail

and the CCD substrate. With the substrate grounded, as in the final camera

configuration, there can be no more than 12.5 volts between any one of
these clocks and the substrate and no more than 25 volts between any two

clock gates. These potentials are considered safe.

Additionaly, circuitry was provided for essentially disconnecting the

clocking signals from the CCD. The clock signals and DC potentials are

passed through FET analog switches before the signal buffers. By opening
these switches, the buffers are disconnected from the clock potentials and

their inputs see only a resistive load to ground. In this way all the CCD

clock potentials are tied to a near groud potential. These switches are open

by default at power up and must be closed by the DSP software. They may

be opened at any time through the software and, if desired, the CCD may

be safely removed from its socket wihout powering down the system.

Catastrophic failure of the clock card circuitry or unpredictable

behavior by the DSP program should not harm the CCD due to the limits

placed on the programable voltage ranges discussed above and the limited

range of the power supply voltages in the system.

14-7

14.3 Software Interface for Programmable Voltages

The programable CCD volatges inthe AIS1 camera system are
supported in different ways at all levels in the camera software. The DACs

that are used to produce the voltages are mapped into the DSPs address

space, the FORTH interpreter handles the different sets of voltages for the

various clock cards in the system, and the user may adjus the voltages
either from a terminal or through one of the utility programs available on

the sun workstation. No direct manipulation of the voltages is provided in
the IRAF interface software, but the user may manipulate them from

within the IRAF shell by calling one of the utility programs as an external
command.

Each level of software associated with the programmable clock
voltages will be discussed in turn below.

14.3.1 DSP Control of Programmable Voltages

The clock cards in the AIS1 camera system are mapped into the DSP

sequencer's address space as a set of registers. Twenty four of these

registers are the eight bit DACs that set the various potentials. The DSP sets

the clock voltages simply by enabling the particular clock card in question

and writing to those locations. The clock cards are mapped into the upper

portion of the DSPs "Y" memory space. The DACs occupy the following
locations:

Table 14.2 DSP Voltage Nmemonics and Addresses

clock name DSP nmemonic

Parallel low par_lo

parallel midrange par mid

parallel high par_hi

serial low ser_lo

serial midrange ser mid

serial high ser_hi

transfer gate low tg_lo

transfer gate high tg_hi

summing well low sw_lo

summing well high sw_hi
CCD substrate s u b

last gate lg

reset gate low rst_lo

reset gate high rst_hi

reset drain vrd

DSP address (hex)
ff08

ff09

ff0a

ff0b

ff0c

ff0d

ff0e

ff0f

ffl 0

ffl 1

ffl 2

ffl3

ffl4

ffl5

ffl6

14-8

output drain vod
extra switch 1 low x l_lo
extra switch 1 high x l_hi
extra switch 2 low x2_lo
extra switch 2 high x2_hi
extra switch 3 low x3_lo
extra switch 3 high x3_hi
extra switch 4 low x4_lo
extra switch 4 high x4_hi

ffl 7
ffl 8
ffl 9
ffl a
ffl b
fflc
ffld
ffle
fflf

The DSP does not keep track of the voltage settings nor does it have
any way of measuring the actual voltage that is produced. It simply sets
the DACs to the values requested by the controller, the 68HCll, when it is
requested to do so.

14.3.2 FORTH Interface for Programmable Voltages

The controller, the 68HCll, is resoponsible for keeping track of the

desired clock voltage settings and for initializing them when so requested.

The 68HCll only records the value that the user desires to have written to
the DAC, it does ot have any way of knowing what that voltage will

actually be, nor does it have any way of measuring the voltage produced.

Since the voltages are controlled by eight bit DACs, the legitimate values

for their settings range from 0 to 255. A setting of 0 will produce the

voltage at the bottom of the voltage's range and a setting of 255 will

produce a voltage at the top of the range. A setting of 128 will produce a

voltage at half range, which is approximatelt 0.0 volts for many of the

sisals in the system including the parallel and serial clocks, the transfer

gate and the summing well. The 25 volt range of these clocks and the 255

different settings provide a convenient 0.10 volt approximate step for each
increment of the DAC value.

A separate table of DAC settings is maintained for each clock card in

the system. Since the STIS camera is a two channel system, there are two

tables of DAC settings in the FORTH dictionary. These tables are

"remembered" along with the rest of the dictionary from session to session
if desired and a set of standard DAC settings may be maintained this way

in the camera controller. New settings may be made at any time by

changing the table entry and issuing the command to initialize the clock

card with the current settings. The tables and the associated commands are
discussed below.

The voltage tables for each clock card in the system are stored as

separate tables, allowing the software to be easily expanded to include

support for more CCD readout channels. The tables are essentially indexed

arrays, and any voltage in the table may be addressed by index and table

14-9

name, but it is often easier to associate a specific name with the voltage in
question. Both methods of addressing the table elements are supported.

The table of DAC settings for channel 0 is referred to as CAM0_VOLT,
and the elements of the table may be read and written by index as in:

(value) (index) CAM0_VOLT C!

to set a new value and

(index) CAM0_VOLT C@

to retrieve the value of an element. Note that since the values are eight
bits in size, the C@ and C! commands are ued to store and retreive the
values. The table of DAC settings for channel 1 is referred to as
CAMI_VOLT and is addressed in a similar way. The order of the voltages
in the tables is the same as the order in which they occupy the DSP

memory space.
Since it may be difficult to remember the correct sequence of the

values, individual FORTH definitions have been defined which index into
the array the correct amount to access thevarious values, and nmemoic
names have been asigned to them to make the tables more easily
accessible to humans. The FORTH definitions simply index the array. An
example of one of these definitions is shown below•

• CAM0_PAR_LO 0 CAM0_VOLT ;

This definition exists solely to allow the user or a control program to access
the voltage setting by name instead of by index. Setting the value of the
parallel low voltage for channel 0 can be accomplished as shown below.

(value) CAM0_PAR_LO C!

Such defintions exist for all the voltages in the system and their names are
listed below.

14-10

Table 14.3 ° AIS1 Channel 0 FORTH Voltage Definitions

voltage

parallel low

parallel midrange

parallel high
serial low

serial midrange

serial high

transfer gate low

transfer gate high

summing well low

summing well high
CCD substrate

last gate

reset gate low

reset gate high

output drain
reset drain

extra switch 1 low

extra switch 1 high
extra switch 2 low

extra switch 2 high
extra switch 3 low

extra switch 3 high
extra sw_tch 4 low

extra switch 4 high

FORTH name

CAM0_PAR_LO

CAM0_PAR_MID

CAM0_PAR_HI

CAM0_SER_LO

CAM0 SER_MID

CAM0 SER_HI

CAM0 TG LO

CAM0_TG HI

CAM0_SW_LO

CAM0_SW_HI

CAM0_SUB

CAM0_LAST

CAM0_RST_LO

CAM0 RST_HI

CAM0_VOD

CAM0_VRD

CAM0_X I_LO

CAM0_XI_HI

CAM0_X2_LO

CAM0_X2_HI

CAM0_X3_LO

CAM0_X3 HI

CAM0 X4_LO

CAM0_X4_HI

comment

(unused)

(unused)

(unused)

(current source)

(current source)

(unused)

(unused)

(unused)

(unused)

(unused)

(unused)

I4-11

Table 14.4 - AISI Channel 1 FORTH Voltage Definitions

voltage FORTH name comment

parallel low

parallel midrange

parallel high
serial low

serial midrange

serial high

transfer gate low

transfer gate high

summing well low

summing well high
CCD substrate

last gate

reset gate low

reset gate high

output drain
reset drain

extra switch 1 low

extra switch 1 high
extra switch 2 low

extra switch 2 high
extra switch 3 low

extra switch 3 high

extra switch 4 low

extra switch 4 high

CAM I_PAR_LO

CAMI_PAR_MID

CAM I_PAR_HI

CAM I_SER_LO

CAMI_SER_MID

CAMI_SER_HI

CAMI_TG_LO

CAM I_TG_HI

CAMI_SW_LO

CAMI_SW_HI

CAMI_SUB

CAM I_LAST

CAMI_RST_LO

CAMI_RST_HI

CAMI_VOD

CAMI_VRD

CAMI_XI_LO

CAMI_XI_HI

CAMI_X2_LO

CAM I_X2_HI

CAMI_X3_LO

CAM I_X3_HI

CAMI_X4_LO

CAMI_X4_HI

(unused)

(unused)

(both channels)

(current source)

(current source)

(unused)

(unused)

(unused)

(unused)

(unused)

(unused)

14-12

14.4 Setting the CCD Potentials

The programmable voltages may be manipulated in a variety of

ways. Since the camera contains the FORTH interpreter and has the on

board EEPROM for storing the FORTH dictionary, maintenance setup and

diagnostics may be performed with a simple RS-422 terminal connected to

the serial port on the controller. All camera operations may be performed

through this interface, but, of course, no image data may be collected. This

method of interacting with the camera may be useful for setting the clock

voltages to new values if the desired values are known (i.e. when installing

a different but previously tested CCD). The voltages may also be adjusted

using one of the utility programs provided on the Sun workstation. The

"AISsetup" program may be used to send the default DAC settings file

"AISvolts" to the camera through the serial interface on the VMEbus

interface card. The "sendfile" program may be used to send any arbitrary

text file to the camera through that iterface, and tha file could contain a list

of DAC settings. Either of these programs sends a simple ASCII text file to

the camera. This file consists of FORTH commands and may include

anything that the 68HCll can compile or execute. As far as setting camera

voltages is concerned, the files should contain lines such as that shown

below.

250 CAM0_VOD C!

225 CAM0_VRD C!

INIT-VOLTS

The first two lines set the FORTH dictionary table entries for those two

voltages to new values. The last line instructs the 68HCll to initialize the

clock voltages and actually change the DAC settings on the clock card. The

text file may adjust whichever clock voltages are desired. If the file does

not contain the INIT-VOLTS instruction, or some otherinstruction which

will cause INIT-VOLTS to be executed, then the table entries will be

changed but the CCD voltages will not. If it is desired to make these new

values the defaults, then the instruction STORE should be placed in the file

after the values have been updated. It is not necessary to initialize the

DACs in order to store the new values as defaults.

Additionaly, the AISsay program can be used to manipulate a single

clock voltage. This program is used to issue a single line of text to the

camera. It is called from the UNIX command line in the following way.

AISsay <string>

As an example •

14-13

AISsay "134 CAMI_LAST C! INIT-VOLTS"

would set the last gate DAC value for channel 1 to 134 and initialize the
camera voltages. And the command

AISsay "134 CAMI_LAST C! STORE"

would set the last gate voltage and store as the default.

14-14

14.5 Programmable Voltage Example File

14-15

AISvolt$ Sat, Sep 19, 1992 $:17 PM 1

DEC i MAL

190 2._M0 PAP, MID C!

i49 CAM0 PAR HI C!

97 CAM0 SER LO C!

_ 2AM0 SER MID C!

169 2AM0 SER HI C!

-'6 CAM0 TG LO C!

190 CP-/M0 TG HI C!

32 C._40 SW LO C!

169 CAM@ _ HI C[

12 3 2AM0_SIIB C !

i00 3;_M0 LAST C!

:3 3}_M0 RST LO C!

132 CP_40 RST HI C!

228' CAMO_,rOD C !

13:3 CAM0 _VRD C!

0 C._M0 XI LO C!

123 C._40 X1 HI C!

0 CAM0 X2 LO C!

149 CAM0 X2 HI C!

0 CAM0 X3 LO C!

_:: CAM0 X3 HI C!

3, 2_0 X4 LO C!

_=: 2AM0 X4 HI C!

40 2.<M! PAR LO C!

190 CAMI PAR MID C!

149 CAMI PAR HI C!

37 C._MI SER LO C!

q C_MI SER MID C!

169 CAM1 SER HI C!

76 CAM1 TG LO C!

180 CAM1 TG HI C!

82 C;_41 SW LO C_

169 CAM1 _ HI C[

128 CAMI_SUB C !

102 CAMI_LAST C!

0 CAM1 RST_LO C!

203 CAM1 RST HI C!

221 CAMI--gOD C !

180 CAM i_VRD C_

0 CAMI Xl LO C[

128 CAM1 XI_HI C!

0 CAMI X2 LO C_

149 C._41_X2 HI C!

0 CAM1 X3_LO C!

oct CAM1 X3 HI C!

0 CAMI X4 LO C!

255 CAM1 X4 HI C!

DECIMAL

15. Camera Configuration Parameters

The operation of the AIS1 camera is controlled by a set of

variables. These variables are stored in a "parameter table" and may

be referenced by index or name. The parameters may be separated

into several groups, each relating to a different aspect of camera

operation.

15.1 Format Parameters

The first group of parameters are considered 'format'

parameters. These parameters control the area on the CCD imager

which will be read during the next image acquistion cycle. The

format parameters may be set to any 16 bit value. They are

considered unsigned numbers and range from 0 to 65535. No type of

error checking is performed to assure that the current parameters
match the user's CCD or that valid image data will be obtained.

Complete flexibilty within the scope allowed by the geometry

implied by the parameters is pursued instead. It is up to the user to

assure that the parameters in use match his or her desires. Upon a

system reset the format parameters will be returned to the value
stored in the EEPROM memory. The format parameters may be

stored there at any time using the STORE command which stores the

entire FORTH dictionary.

15.1.1 Serial Read Parameters

The serial register is read out based on a set of format

parameters which imply the following geometry:

<_ I............ I......... I................. I........... I........... I

prescan underscan origin read dimension postscan overscan

The readout operations are performed from left to right.

The pixels in the prescan, origin, and postscan are discarded. The

pixels in the underscan, the read dimension and the overscan are

read off the CCD imager. The discarded pixels are in units of physical

pixels and are not affected by the binning factor. The others are read

off the chip and binning is performed. The same binning factor is

used on the pixels in the underscan, read dimension, and overscan.

Typically,
prescan + {underscan * binning factor}

and

= serial extension length

15-1

dimension,

origin + {binning factor * read dimension} + postscan >= CCD serial

but this convention is not enforced. Not all users will care

to use the underscan and overscan features. In this case the prescan,

underscan, and overscan parameters may be set to zero and the

following equation will be used.

length

origin + {binning factor * read dimension} + postscan = total CCD serial

No effort is made to enforce this convention. It is simply that,
a convenient convention.

0 CCD_SER CCD Serial Dimension

This parameter represents the total length of the CCD serial

register. This includes any pixels in the serial extensions on either

end of the register. This parameter is used by the DSP as the number

of pixels to discard when it clears the serial register. It is irrelevent

to those rows which are actually read.

1 BIN_SER Serial Binning Factor :

The serial binning factor is the number of pixels in the serial

register which will be shifted for each pixel read. By binning pixels

the image resolution is sacrificed for higher signal to noise ratio. In

low light applications or where the image data is one dimensional

this may be used to great benefit.

2 PRE_SER Serial Prescan

The serial prescan is the number of pixels to discard before

performing the serial underscan. The prescan is in units of physical

pixels and is not affected by the binning factor. No image data is

produced.

3 UNDER_SER Serial Under Scan

The serial underscan is the number of pixels to read after the

serial prescan. This parameter represents the number of binned

pixels to read. One data point is produced for each unit of under scan.

Binning is performed.

4 ORG_SER Serial Read Origin

This number represents the number of pixels to be discarded

after performing the serial under scan. This parameter is in units of

15-2

D
physical pixels and is unaffected by the binning factor. No image data

is produced.

5 READ_SER Serial Read Dimension

The value of this parameter represents the number of pixels to

read after the serial origin and before the postscan. These pixels are

represened in units of binned pixels. One data point is acquired for

each unit of read dimension. Binning is performed.

6 POST_SER Serial Postscan

The value of this parameter represents the number of pixels

todiscard after the read is performed. These pixels are representedin

units of physical pixels and are not affected by binning factor.No

image data is produced.

7 OVER_SER Serial Overscan

The value of this parameter represents the number of data

points to be taken after the postscan is performed. These pixels are

represented in units of binned pixels. One data point is acquired for

each unit of serial overscan. Binning is performed.

4.1.2 Parallel Read Parameters

The parallel register is read out based on a set of format

parameters which imply the following geometry:

<<< I........ I..................... I............. I............. I

origin read dimension postscan overscan

The readout operations are performed from left to right. The

rows in the origin and post scan are discarded. The rows in the the

read dimension and the overscan are read off the CCD imager. The

discarded rows are in units of physical rows and are not affected by

the binning factor. The others are read off the chip and binning is

performed. The same binning factor is used on the rows in the read
dimension and overscan.

8 CCD_PAR CCD Parallel Dimension

This parameter represents the total length of the CCD parallel

register. This parameter is it clears the parallel register. It is

irrelevent to those rows which are actually read.

9 BIN_PAR Parallel Binning Factor

15-3

The parallel binning factor is the number of rows in theparallel
register which will be shifted for each row read. By binning rows the
image resolution is sacrificed for higher signal to noise ratio. In low
light applications or where the image data is one dimensional this
may be used to great benefit.

1 0 ORG_PAR Parallel Read Origin

This number represents the number of rows to be discarded

before performing the parallel read. This parameter is in units of

physical rows and is unaffected by the binning factor. No image data
is produced.

1 1 READ_PAR Parallel Read Dimension

The value of this parameter represents the number of rows to

read after the parallel origin and before the postscan. Theserows are

represened in units of binned rows. Binning is performed.Image data

is produced.

1 2 POST PAR Parallel Postsean

The value of this parameter represents the number of rows to

discard after the read is performed. These rows are represented in

units of physical rows and are not affected by binning factor.No

image data is produced.

1 3 OVER_PAR Parallel Overscan

The value of this parameter represents the number of rows to

be read after the postscan is performed. These rows are represented

in units of binned rows. Binning is performed. Image data is

produced.

15.2 Exposure Parameters

Exposure parameters include shutter delays, exposure time,

and the number of times the CCD should be cleared prior to the

exposure.

Two parameters are used when opening and closing the

shutter. Since the shutter takes a certain amount of time to open, and

it would be undesirable to begin to time the exposure or read out the

CCD before the shutter motion had stopped, these two parameters are

provided to allow the user to set the delay which will take place
after the camera controller opens or closes the shutter. The values

are stored as 16 bit numbers representing milliseconds. Delay times

may therefore vary from 0 to 65.535 seconds. If your shutter takes

15-4

D

P

longer than this to open or close, you will need to write custom open
and close routines.

2 0 ODELAY Shutter Open Delay

The shutter open delay is the time, in milliseconds, that the

camera controller will pause after opening the shutter to be sure that

it is fully open. Typical values for small aperture shutters are around

8 to 10milliseconds. The value of the shutter open delay may be as
great as 65535 milliseconds.

2 1 CDELAY Shutter Close Delay

The shutter close delay is the time, in milliseconds, thatthe

camera controller will pause after closing the shutter before

continuing. This is to be sure that we do not begin shifting the charge

on the CCD until the shutter is closed. Typical times for small apeture

shutters are around 10 to 20 milliseconds. The value of the shutter

close delay may be as great as 65535 milliseconds.

22 EXP_TIME LOlower 16 bits exposure time

2 3 EXP_TIME_HI upper 16 bits exposure time
The exposure time for image acquisitions is stored as a 32 bit

value in two 16 bit parameters. The value represents the exposure

time in milliseconds. The exposure time may therefore be set from 0

milliseconds to just over 7 weeks. This should be sufficient to cover

most applications.

2 4 NUM_CLEARS number of clears

Certain camera commands will clear the CCD as part of thier

operation. These commands are typically high level image acquisition
commands. The number of times that the CCD is cleared in these

circumstances is controlled by the value of the following parameter.

A typical value for this parameter is two, but it may range from 0 to

65535. A value of zero may be of use under some circumstances

where it is not desirable to clear the imager at all. A value of 1 is

acceptable under most conditions where a cleared CCD is desired. The

default value typically assigned is 2 is conservative. Values greater
than 2 are likely to be useful only under unusual circumstances.

15.3 Acquisition Sequence Parameters

The camera may be operates in a sequenced acquisition mode.

Each high level image acquisition command actually acquires a

sequence of images based on the values of these parameters.

Continuous clearing ofthe CCD may be performed between images.

15-5

Clock recombination anti-blooming may be performed during
exposures. The camera may acquire images in a frame transfer mode.
The camera readout may be performed at either of two speeds.

2 5 NUM_IMAGES number of images

The NUM_IMAGES parameter determines the number of

images that will be acquired in each acquisition sequence.

26 IM_DELAY_LO lower 16 bits of image delay

27 IM_DELAY_HI upper 16 bits of image delay

The camera controller will pause between images in the

sequence for the number of milliseconds represented by the value of

IM_DELAY parameter. The parameter is represent as two 16 portions

to allow for delays of greater than 65.535 seconds. The delay is
executed after the first image in the sequence. If the number of

images is set to 1, the camera controller will still execute the delay
before responding with the 'OK' prompt.

3 0 CCLEAR Continuous Clear Flag
The value of this parameter determines whiether the camera

will perform continuous clearing of the CCDbetween exposures.

0 = continuous clearing disabled

1 = continuous clearing enabled

3 1 ANTI-BLOOM Anti-Blooming Flag
The value of this parameter will determine whether the

camera will perform clock recombination anti-blooming during the

exposures.

0 = anti-blooming disabled

1 = anti-blooming enabled

15-6

16. Camera Controller FORTH Software

16.1 FORTH Command Interpreter

All communication between the camera and the host computer

consist of ASCII text strings. All commands from the host to the
camera consist of numeric data and FORTH commands. The MCU's

FORTH interpreter processes these strings and call the appropriate

routines. Some of the commands require operands to be passed
previously. A selection of static parameters reduces the number of

operands that need to be passed. Parameters may be stored as

system defaults. A series of commands may be issued to the camera

by sending a series of parameters and commands separated by

spaces and followed by a carriage return. A maximum of 256

characters may be sent at any time including the carriage return. The
strings issued to the camera may include command definitions, and

these commands may be stored as part of the default command set.

The microcontroller used in the AIS1 camera includes an eight

kilobyte ROM that contains a FORTH-83 compliant FORTH interpreter.

All the software written for the MCU is written either in FORTH or

68HCll assembler instructions.

The MCU program may be considered to be layers of code with

increasing degrees of complexity. Each layer is built out of functions

contained in the preceding layers. The camera's FORTH dictionary

may be selectively removed from interactive access, effectively

removing selected functions. In this way, a programmer can take

advantage of the built-in FORTH interpreter for processing the

command strings, but limit the number and, more importantly, type
of functions available to the user.

At the bottom level is the New Micros Max-FORTH F83

compliant dictionary and the extensions that have been added by the

MCU's manufacturer. The next level consists of MCU specific and

camera specific I/O routines. These routines are used to manipulate

the MCU's control registers and the hardware in the system. These

include functions that read and set the CCD temperature, read the

case temperature, open and close the shutter, initialize and

communicate with the DSP, set the camera gain, set and return

parameter list values, and perform other low level operations.

A variety of functions that perform charge shifting and pixel

conversion exist at the intermediate level. All of these operatiuons

include action by the DSP. Out of these functions the user may build

16-1

customized charge shifting and pixel readout sequences. Under
normal circumstances these functions will be called indirectly
through the short form command interpreter described below.

There is also a set of high level image acquisition commands.
There are functions for acquiring all the standard types of images
from the camera, including bias frames, dark frames, and object
exposures. The elemental parts of these high level image acquisition
routines are also available, including functions to clear the CCD,
expose it to light or integrate dark current, and to read the charge off
the CCD. Under normal circumstances the user will call the highest
level functions rather than re-creating them from their parts. Most
often these functions will be called via the short form commands.

A short form command interpreter is provided to minimize the
overhead associated with the serial transmission of commands from
the host computer to the MCU. All the functions necessary for normal
operation of the camera are available.

16.2 FORTH Command Descriptions

The Following sections describe the various FORTH commands

in some detail. They are presented in order of complexity with the

highest level commands listed first. The 'short form commands' are

listed first, for details on their operation, plesse seee the descriptions

of the functions they call in the following sections.

16.2.1 Short Form Commands

A set of short form commands is provided that is particularly

useful to those very familiar with the command set or for

programmed hardware interfaces, such as the Advanced

Technologies VMEbus interface. All commands in the set are
abbreviated to three letters in order to maximize the transfer rate of

comands between the host computer and the camera controller.

CXX O3ID

CIN INIT

ST@ TEMP!

STC CCD-TEMP?

ST! TEMP!

SCF CISC-OFF

SCT CISC-ON

S B F CRAB-OFF

SBT CRAB-ON

SSO OPEN

SSC CLOSE

restart the FORTH interpreter

initialize the camera

CCD temperature short form

CCD temperature long form

set the CCD temperature

disable continuous clearing

enable continuous clearing

disable anti-bloming

enable anti-blooming

open the shutter
close the shutter

16-2

S I V INIT-VOLTS
S I F INIT-FORMAT
SI S INIT-STATES
SPD SET-PAR_DELAYS
FF? FORMAT?
FSF INIT-FORMAT
LPB PIX-BIN
LRB ROW-BIN
LPC PIX-CLR
LRC ROW-CLR
LPR PIX-READ
LRR ROW-READ
LCW CAM-WRITE
IlL _O_

I I D INTEGRATE_D_

IRD READ

ICL CLEAR

IAB BIAS

IA D DARK

IAL OBS

ACE

ACD

ALL-CLKS-EN

ALL-CLKS-DIS

initialize CAM voltages

iniitialize format parameters

initialize timing parameters

set the parallel delays

fetch the format parameters

initialize format parameters

bin N pixels

bin N rows

discard N pixels
discard N rows

read N pixels
read N rows

write a value to a camera address

integrate light

integrate dark

read the image off the CCD

clear the CCD of all charge

acquire bias

acquire dark

acquire light

enable all the CCD clocks

disable all CCD clocks

16.2.2 High Level Image Acquisition Routines

There is a set of high level image acquisition routines which are

used to initiate a complete CCD exposure and readout sequence.

These routines are described below.

READ

Read the image data off the CCD. The CCD is read out

based on the current format parameters.

CLEAR

Clear the entire CCD array, NUM_CLEARS times. All charge

is cleared off the CCD.

BIAS

Acquire a bias frame, NUM_IMAGES times. The shutter is

closed, CISC stopped, the CCD is cleared, the image data is

read off the chip based on the current format parameters,

16-3

continuous clearing of the chip is begun, if enabled, and
then a delay of IM_DELAY milliseconds is executed. This
entire sequence is executed NUM_IMAGES times.

DARK
Acquire a dark reference frame, num_images times. The
shutter is closed, CISC stopped, the CCD is cleared, dark
current is integrated for EXP_TIME milliseconds, the
image data is read off the chip based on the current
format parameters, continuous clearing of the chip is
begun, if enabled, and then a delay of IM_DELAY
milliseconds is executed. This entire sequence is
executed NUM_IMAGES times. If enabled, clock
recombination anti-blooming is performed during dark
frame integration.

OBS

Acquire a light frame, num_images times The shutter is
closed, CISC stopped, the CCD is cleared, the shutter is

opened, light is integrated for EXP_TIME milliseconds, the

shutter is closed, the image data is read off the chip

based on the current format parameters, continuous

clearing of the chip is begun, if enabled, and then a delay

of IM_DELAY milliseconds is executed. This entire

sequence is executed NUM_IMAGES times. If enabled,

clock recombination anti-blooming is performed during

light integration.

16.2.3 Low Level Image Acquisition Routines

There is a set of low level image acquisition routines. A small

amount of additional overhead is associated with a read sequence

based on low level routines, due to increased participation by the

68HCll, but very complicated read sequences can be constructed.

Not all programmers will need to use these routines, as normal

operational modes are fully supported by the high level image

acquisition routines. Low level image acquistion routines include the

following:

PIX-BIN <N> PIX-BIN

16-4

D

Bin N pixels in the serial direction. N serial shifts are

performed. Binning factor is not used. N is an integer
from 0 to 65535.

ROW-BIN <N> ROW-BIN

Bin N rows in the parallel direction. N parallel shifts are

performed. Binning ifactor is not used. N is an integer
from 0 to 65535.

PIX-CLR <N> PIX-CLR

Discard N pixels in the serial register. Binning factor is

not used. N is an integer from 0 to 65535.

ROW-CLR <N> ROW-CLEAR

Discard N rows in the parallel register. Binning factor is

not used. N is an integer from 0 to 65535.

PIX-READ <N> PIX-READ

Read N pixels out of the serial register. Binning is

performed. N is an integer from 0 to 65535.

ROW-READ <N> ROW-READ

Read N rows off the CCD. Binning is performed.

N is an integer from 0 to 65535.

16.2.4 Shutter Control

Two routines exist for manipulating the camera's shuuter. Their

purpose is self-evident. There are shutter delay parameters which

determine how long the controller will wait for the shutte blades to

actually finish moving. See the parameter descriptions for more
information.

OPEN

Open the camera's shutter.

CLOSE

Close the camera's shutter.

D
16.2.5 Temperature

TEMP?

Measurement

16-5

Reports the temperature of the CCD in an unformatted
ASCII string of the form:

-85<CR>

TEMPI
<N> TEMP?
Set the desires CCD temperature to a new value. N is the
desired temperature. N is an integer that may vary from
-200 to +55.

CCD-TEMP?

The CCD temperature is reported as an ASCII text string
of the form:

<CR> CCD temperature = -125 <CR>

TEMP-DIFF?

Reports the difference between the temperature of the

CCD and the desired temperature in an unformatted

ASCII string of the form:
-85<CR>

q

16.2.6 Format commands

These two words may be used to set and examine the format

parameters. In each case the format parameters are passed as a

simple character stream.

FPI <M> <N> FP!

Set the value of a format parameter. N is the parameters
index in the parameter table, and M is the new value for

the parameter.

FP@

<N>FP@

Fetch and print a parameter value.

index in the parameter table.

N is the parameters

INIT-FORMAT

Initialize the format parameters. The current format

parameter values are passed to the DSP sequencer for use

during subsequent image acquisitions. This function, or

one of its short forms 'SIT' or 'FSF' must be called for

q

16-6

parameter changes to take effect. If the 'FP!' command is
used to change the parameters, then this command is
unneccessary, as it is included in 'FP!'.

FORMAT?
Fetch the current format parameters. The current format
parameters are reported in a single text string in the
following order:

CCD_SER
BIN_SER

PRE_SER

UNDER_SER

ORG_SER

READ_SER

POST_SER

OVER_SER

CCD_PAR
BIN_PAR

ORG_PAR

READ_PAR

POST_PAR

OVER_PAR

They are reported on a single line.

16.2.7 CCD voltages

Two routines exist for handling the CCD voltages. The first

prints the voltages in a table. The second initializes the clock cards

with the new voltages. Simply chnging the values in the voltage

tables does not affect the actual voltages applied to the CCD. Calling

INIT-VOLTS sets all the voltages to the current table values.

SHOW-VOLTS

This function is used to generate a lsiting of the current

CCD clock voltage DAC settings. The voltages themselves

cannot be read by the system. This function lists the eight

bit values that are to be written to the DACs during an

INIT-VOLTS or SIV operation. The actual voltages depend

on the way the various parts of the hardware are

16-7

configured. If you need this function, you probobly know
how the numbers relate to the voltages.

INIT-VOLTS
Initialize the CCD voltages. The current values of the
clock voltages are downloaded to the DSP, and written to
the DACs on the clock card. This function, or its short
form SIV should be called after changing the voltage

table entries in order to have the new settings take
effect. See also SIV.

16.2.8 CCD timing

The timing of the clock waveforms applied to the CCD is

programmable in this camera system. The desired CCD clock timing is

stored in tables. These functions are used to examine those timing

tables. INIT-STATES is used to initialize the DSP sequencer with the

current table entries. For a more detailed description, please see the

chapter describing the programmable timing.

INIT-STATES

Initialize timing states. The current ttiming tables are

downloaded to the DSP sequencer for use as clock timing

in subsequent CCD readouts. This command, or its short

form 'SIT', must be called after changing the state tables

in order for the changes to take effect. See also SIT.

SET-PAR_DELAYS
<N> SPD or <N> SET-PAR_DELAYS

Set the parallel delay times to a new value. The AIS

cameras support different delay times between the

various stages of a parallel shift. This feature is usually

unused. This function allows one to set all the delays to a

single value. It is convenient. The new values will not
take effect until a SIF or INIT-FORMAT command has

been received.

SHOW-PAR_STATES

This function is used to generate a listing of the timing

states currently in the table associated with charge

shifting in the parallel direction. This is performed the

16-8

D
same way in both the slow and the fast modes. This

function is used by the user who wishes to modify the

timing states to change the way the parallel clocks are

run. The average user has no need to view or modify
these tables.

SET-PAR_DELAYS

This function is used to set the parallel clock delay values

to some value. The camera software supports different

values for parallel delay between the steps in the parallel

shift, but these are usually set to the same value

SHOW-ANTI-BLOOM_STATES

This function is used to generate a listing of the timing

states currently in the table associated with clock

recombination anti-blooming.

SI-IOW-SER_STATES

This function is used to generate a listing of the timing

states currently in the table associated with the shifting

of charge in the serial register during a slow mode bin,

discard, or read operation. This table contains the serial

clock timing only. This function is for use by the user who

is modifying the camera's timing and needs to see the

current settings.

SI-IOW-ANA_STATES

This functions are used to generate a listing of the states

currently in the tables associated with pixel readout in

the slow mode. The signals represented here are

generated at time intervals determined by the entries in

the SLOW_DELAY table. These functions are of interest to

the user who is changing the CCD and conversion timing.

The average user has no need to see these tables.

16.2.9 Camera Speed

The AIS1 readout speed is adjustable from approx 40kHz

downward. The exact speed depends on some timing variables, most

importantly the integration time of the dual slope integrator. The

SPEED may be adjusted over a much wide range and. As the

16-9

ANALOG TO DIGITAL convertors architecture is that of a dual slope

integrator, the gain of thr system is directly afected by the

integration time. The integration time is determined by the values of

ANA_DELAYs 7 and 9. Several words are provided here to set the
cameras slow readout rate to convenient values.

ITIME!

<N> ITIME!

This function sets the integration time for the slow speed
analog processor. It expects a 16 bit number on the stack

with a value ranging from 1 -> 65535. This value is used

by the DSP as a counter for the integration delay. The DSP

delays 100 ns for every unit in the integration time.

Integrations may therefore vary from lOOns to 6.5535

ms. In practice, there is approx 350 ns overhead in the

delay time and lOOns integration times are not possible.

Additionally, if the time is set too short, the converter

will not have finished converting the previouspixel when

the new command to convert comes along. Integration

times as short as l us should work fine. Extremely long
integrations will saturate the converter.

SPEED!

<N> SPEED!

This function is used to set the readout speed to a

particular value. It expects the new value for the

integration time on the stack. It is used primarily as a

convenience for the definition of the functions that
follow.

40KHZ, 35KHZ, 30KHZ, 20KHZ, 15KHZ, 10KHZ, 5KHZ
These functions are used to set the camera's readout

speed. They set the readout mode to slow, and set the

analog delays appropriatly to establish the requested

readout speed. The speeds that result are fairly obvious
from the function names.

16.2.10 Continuous Clearing of the CCD

It is often desirable to continuously clear charge off the CCD

between image acquisitions. If there is no shutter in the system or if

16-10

/

the temperature of the CCD is fairly high this is very desirable. In a

cryogenic camera, this is not as important since the dark current is

typicaly very low. The 'CISC' terminology comes from the

Photometrics CC200 cameras, where it stood for 'Clear Image and

Storage Continuously'. Continuous clearing of the camera is

performed by the DSP. A parameter is maintained that may be polled

at any time to determine if it should do so.

START-CISC

Begin clearing the CCD continuously. Does not affect the

status of the CCLEAR parameter.

STOP-CISC

Stop the continuous clearing of the CCD. Does not affect

the status of the CCLEAR parameter.

CISC?

Examine CCLEAR parameter and begin to continuously
clear the CCD if it is true.

CISC-ON

Enable continuous clearing of the CCD between frames.

CISC-OFF

Disable continuous clearing of the CCD between frames.

16.2.11 Clock Recombination Anti-Blooming

Clock recombination anti-blooming is controlled by the DSP. It

may be told to begin the process through a Host Command at any

time that it is not executing any other host command. It will continue

until the 68HCll tells it to stop. The 68HCll will call this function

during exposures if the ANTI-BLOOM parameter is set to true.

START-CRAB

Begin clock recombination anti-blooming. Does not affect

the status of the ANTI-BLOOM parameter.

STOP-CRAB

Stop clock recombination anti-blooming. Does not affect

the status of the ANTI-BLOOM parameter.

16-11

CRAB?
Examine the ANTI-BLOOM parameter and begin clock
recombination anti-blooming if it is true.

CRAB-ON
Set the ANTI-BLOOM parameter to true.

CRAB-OFF
Set the ANTI-BLOOM parameter to false, and stop clock
recombination anti-blooming if it is in progress.

16.2.12 CCD Image Integration

These routines are used to manipulate the exposure counter, to
initiate exposures, terminate exposures, and perform complete light
or dark current integrations.

EXP_LEFT@
This function is used to query the time remaining in the

current exposure sequence. It may be called at any time.

EXP_LEFT!
This function is used to set the remaining exposure time

to some value. It is used internally by the exposure

commands and is not normally needed by the user.

Programmers may use this function in custom exposure
commands if so desired.

EXP-START

This function is used to begin an exposure sequence. The

EXP_TIME parameter is copied into the EXP_LEFT

variable, the shutter is opened, and the exposure timer is

started. Control is returned to the host immmediately,

without waiting for the exposure to complete.

EXP-PAUSE

This function is used to pause an exposure in progress.

The shutter is closed and the exposure timer is stopped.

The CCD is not read out and the remaining exposure time

is maintained so that the exposure may be completed by

issuing the EXP-RESUME command discussed below.

16-12

EXP-RESUME
This function is used to resume an exposure that has
been interrupted via the EXP-PAUSE command. The
shutter is reopened and the exposure timer is restarted
where it left off. If the EXP_LEFT variable has been

changed in the interim, that is the exposure time that will
follow.

EXP-ABORT
This function is used to abort an exposure in progress.
The shutter is closed and the exposure counter is stopped.
The EXP_LEFT variable is zeroed and continuous
clearing of the CCD is begun if the CISC parameter is true.
The CCD is not read out. No image data is generated. If it
is desired to read the data at this point it may be done
via the READ command.

EXP-LEFT?
This function is used to query the time remaining in the
current exposure cycle.

EXP-WAIT
This function s used to wait for the completion of the
current exposure cycle.

EXP-STOP
This function closes the shutter, and stops clock
recombination anti-blooming. Used internally by the
camera, it is not needed by the typical user.

EXPOSE_CCD
This function is used to perform a complte exposure cycle
on the CCD. Calls EXP-START, EXP-WAIT, and EXP-
STOP defined above.

INTEGRATE-LIGHT
Integrate light onto the CCD for EXP-TIME milliseconds
The shutter is opened the exposure delay is performed,
and the shutter is closed. Clock recombination anti-
blooming is performed during the exposure if it is
enabled.

INTEGRATE-DARK

16-13

Integrate dark current onto the CCD for EXP-TIME
milliseconds, the shutter is assumed to be closed already.
Clock recombination anti-blooming is performed during
the exposure if it is enabled.

16.2.13 Time Measurement

These routines are used to manipulate the system timer, a free

running counter incremented every millisecond, and to measure the

passing of time. These may be useful to the programmer who is

constructing new image acquisition sequences or any other function

that requires the accurate measurement of time.

TIME@

This function fetches the cameras current timer value

and places it on the FORTH stack as a double length

number. This function may be of some use to the user

who wishes to create custom FORTH definitions, but is

otherwise unnecessary. It is used internally by the

system software.

TIM E ! <D> TIME!

This function expects a double length number on the

FORTH stack and sets the system timer to that value. This

function may be of some use to the user who wishes to

create custom FORTH definitions, but is otherwise

unnecessary. It is used internally by the system
software.

STOP-TIMER

This function will stop the cameras free running timer. It

is not usually necessary to call this function. Useful for

debug.

START-TIMER

This function starts the camera's free running timer. It is

called at system startup by the INIT routine and need not

usually be called by the user or a user program unless

STOP-TIMER has been called. If the timer is not running,

any function which calls M-WAIT or MS-WAIT will hang

the system indefinitely.

16-14

M S - W A I T <D> MS-WAIT
This function causes the system to pause for the number
of milliseconds specified by the double length number
passed on the FORTH stack. It may be of use to one who
desires to create custom FORTH definitions. Since it

accepts a double length number, very long delays may be
generated. See also M-WAIT.

M - W A I T <N> M-WAIT

This function causes the system to pause for the number

of milliseconds specified by the 16 bit value passed. This

function may be of use to one who desires to create

custom FORTH definitions. The number N ranges from 0

to 65535, and the delay may therefore range from 0 to

65.535 seconds. Extremely short delays may be noticably

affected by the small amount of overhead associated with
the execution of the task.

16.2.14 System Maintenance

The 'system maintenance' routines are used to perform low

level initialization of the camera controller as well as to manipulate

the FORTH dictionary. They are not needed normally. They are used

by the system internally, and are available to the programmer.

COLD

The camera system software is restarted. This is

esentially a software reset.

INIT

Camera initialization function. All parts of the camera are

initialized or re-initialized. It is neccessary to call this

function before using any of the other camera control
functions.

VERSION

This function is used to query the camera about the

software version that is currently running. Used

primarily during software development. Reports the

version and a date as an ASCII text string.

16-15

EEPROT

This function is used to protect the EEPROM on the
controller card from write accesses. It is used internall by
the STORE function to protect the EEPRAOM after it has
been written. It is not normally needed by the user.

EEUNPROT

This function is used to unprotect the EEPROM on the
controller card. This allows the EEPROM locations to be
written over. This function is used internally by the
STORE function before writing the EEPROM. It is not
normally used by the user.

EE-!
<N> <M> EE-!
This function is used to write a value into the EEPROM
memory. It accepts two 16 bit numbers on the stack and
operates just like the normal FORTH '?' command. N is the
data and M is the address.

C

EE-C!

<N> <M> EE-C?

This function is used to write a value into the EEPROM

memory. It accepts two numbers on the stack and

operates just like the normal FORTH 'C?' command. N is

the 8 bit data and M is the 16 bit address.

STORE

This function is used to store the current state of the

camera's FORTH dictionary as the default. This includes

all the format parameters, voltage and timing tables and
any variables. Also, any user defined functions which the

user desires to include in the default dictionary are
saved.

q

RESTOR

This function may be used to restore the dictionary from

the EEPROM at any time. Primarily used for debugging,

this command is not needed in normal operation of the

camera. The camera performs a RESTOR command on

power-up reset or in response to a CXX command.

CUT-DICT q
16-16

D
This function s used to cut the FORTH dictionary at any

point so that lower level functions will not be accessable

to the user or host computer. The primary use of this is

to prevent the user from changing parameter or timing

information that should not be changed. The system

manager might find it useful to cut the dictionary at a

fairly high level once all the parameters and timing are at

the desired state. The function returns two very

important pieces of information: the address of the

dictionary link that was broken and the value that should

be placed there to restore the dictionary.

BRIDGE-DICT

This function is similar to CUT-DICT except it allows to

continue the dictionary at any point. This can be used to
disable access to a set of words

' WORD2 ' WORD1 BRIDGE-DICT

disables all words below WORD2 including WORD1.

16.2.15 DSP Software Support

The DSP program is developed on a PC, Macintosh, or Sun

platform and the '.LOD' file generated is downloaded to the camera

using this function.

DNLD

download a new DSP sequencer program to the camera.

DSP-BOOT

reset the DSP sequencer in it's bootstrap mode

DSP-DUMP

This function dumps DSP program code from the FORTH

dictionary to the DSP sequencer.

DSP-OK?

check that the DSP is operating correctly and responding

to host commands. Used internally by a variety of camera

control functions to check status before proceeding.

16-17

INIT-DSP

This function initializes the DSP sequencer. The DSP is

reset and program code is transferred to it. The DSP-OK?
function is then used to determine if the DSP is

responding correctly. If not, an error message is

generated.

DSP8@

fetch 8 bit data values from the DSP56001 sequencer.

The datum is left on theFORTH stack when it has been

fetched.

DSP16@

fetch 16 bit data values from the DSP. The datum is left

on theFORTH stack when it has been fetched.

DSP8! <N>DSP8!

pass 8 bit data values to the DSP. N is the datum.

DSP16! <N> DSP16!

pass 16 bit data values to the DSP. N is the datum.

16.2.16 Test Functions

A small set of test functions are provided for hardware

debug. Most are repetitive words that are useful for testing small

subsets of the clock and analog cards.Useful for debugging the

camera electronics. Not needed in normal operation.

RREAD or READS

read the CCD repeatedly until a character is recived

through the serial communications link.

RCLEAR

clear the CCD repeatedly until a character is recived

through the serial communicatyions link.

RBIAS

acquire bias frames repeatedly until a character is

received through the serial communications link.

ROBS

16-18

acquire exposures repeatedly until a character is received
through the serial communications link.

RDARK
acquire dark frames repeatedly until a character is
received through the serial communications link.

16.3 Creating Custom FORTH Definitions

It is possible to create custom FORTH commands for the AIS1
camera if it is found that the basic command set is not sufficient for a

given application. This is a very simple process.
The AIS1 camera controller contains a F68HCll microcontroller

from New Micros Inc located in Dallas Texas. It is a custom version of

Motorola's standard MC68HCllA8 microcontroller which New Micros

has had manufactured with a FORTH interpreter in the on chip ROM.

The camera controller expects FORTH commands through the serial

port. All communication with the camera controller during operation

of the camera consists of ASCII text strings passed from the host

computer to the camera. These strings are interpreted as FORTH

commands.

The text strings passed may create new FORTH commands by

the normal means of adding words (functions) to the FORTH

command dictionary. Definitions are ASCII strings of the following

format:

(FORTE cca_ands) ;

The definition begins with the receipt of the colon character.
NAME is the name of the new definition. The FORTH commands axe a

string of ASCII text which tell the interpreter what to execute when

the function NAME is called. The definition is terminated by the

semi-colon character.

For example:

: MYg_RD OPEN CLOSE READ ;

defines a new word named MYWORD that opens the sutter, closes the

shutter and reads the data off the CCD. All the words called in the

FORTH commands section of the definition must already exist inthe

16-19

FORTH dictionary or an error message will result and the complitaion
will be terminated.

This rather simplistic description is intended only for the user
who desires to create simple commands. A much more complete
description of FORTH and FORTH definitions can be found in such
useful refernces as :

MAX-FORTH Reference Manual
New Micros Inc.
1601 Chalk Hill Road
Dallas Texas 75212
1-214-339-2204

Starting FORTH
Leo Brodie, FORTH Inc.
Prentice-Hall, Inc.,Englewood Cliffs, N.J.
ISBN 0-13-842930-8

Custom words may be defined through any of the normal
means of communication with the camera. An RS-422 terminal

connected to the camera's serial port for example, or an ASCII text

file containing new definitions may be downloaded to the camrea via

the "sendfile" program from the UNIX command line, or the "say"

program may be used from the UNIX command line to issue a new

definition which can fit on a single line.

Additionally, custom FORTH words may be added to the

camera's default dictionary by storing them in the EEPROM located

on the controller card. This is also a very simple process and is

described in the following section of this document.

16.4 Saving and Restoring the FORTH Dictionary

The FORTH dictionary may be saved at any time by the user or

a control program by issuing the STORE command. This command

copies the current dictionary, stored in the 68HC11's RAM memory,
into the EEPROM memory. At startup, the contents of the EEPROM

are copied into the RAM, returning the camera to the state it was in

when STORE was last called. All the camera system parametrs and

timing tables are restored along with the standard dictionary of
FORTH commands and any commands that the user had defined

previous to issuing the STORE command. The user is free to store
whatever functions she would like in the EEPROM.

16-20

D
17. DSP56001 Sequencer Software

The DSP software consists primarily of a set of routines and

associated subroutines required to set CCD clock rail voltages and
output amplifier operating point voltages, to shift charge on the CCD
or CCDs, to manipulate CCD clock lines and analog processor control
signals, and to perform analog to digital conversion of the pixel data.
The DSP routines may be divided into three categories: System

configuration, system test, and CCD control and pixel conversion.
System control routines are used to set CCD clock voltages and

output FET voltages as well as establishing format parameters for
CCD readout. Low level functions to read and write DSP memory
locations allow the user to directly manipulate the camera hardware.

System test functions provide facilities for testing and debugging
the camera system hardware. A simple test funcion is provided
which allows the controller or host computer to test the DSP's proper

operation. Additional functions are provided which allow the user to
generate specific patterns of data and or voltages at various points
on the clock generator modules for diagnostic test.

Charge shifting and conversion functions range in complexity
from simple primitives such as shifting one pixel in the serial
register to fully contained functions including clearing and readout of
the CCD as well as "time delay integration" operation. By combining

primitive commands the user may construct complex readout
sequences not directly supported in the higher level operations.

DSP operations are flexible enough to provide for a wide range
of camera configurations. A high level command set combined with a
set of low level commands allow for a variety of modes of interaction
with the sequencer. The casual user may rely only on the built in

command sequences to acquire image data, while a programmer
familiar with the system hardware and software may access the
hardware directly through the DSP's low level commands to generate
custom CCD control sequences.

17.1 68HCll Host Interface

The 68HCll passes commands to the DSP through the DSP's
command vector register, CVR, the value written there determines
which of the host commands will be executed. There are a total of 28

command vectors which may be passed the first 26 correspond to
the DSP's normal exception processing including external interrupts,
software interrupts,and other interrupts associated with the dsp's
various peripherals. Through the CVR, we may force recognition of

17-1

any of these exceptions. Some of those are implented in ths code. in
addition, there are 12 command vectors reserved for use by the host.
It is through these command vectors that we normally force ecution

of dsp routines, the routines which we may cause the dsp to execute
include the following:

17.2 DSP Functions

HV# FUNCTION

6 say_ok

7 cam-write

8 cam_read
9 volt_test
10 cam_ctl!

11 init-volts

12 init-states
19 init-format

20 read

21 clear

22 pix-bin

23 row-bin

24 pix-discard

25 row-discard

26 pix-read

27 row-read

30 anti-bloom

DESCRIPTION

respond to 6811 as test
none
write to camera addresss
addr data 16 bit
read from camera address

test clock voltage dac's
write to cam control latch

set cam clock voltages
24 8 bit voltage settings
set camera readout timing
set readout parameters
xx 16 bit format parameters
read the ccd

none
clear the ccd
1 8 bit number of clears

shift pixels to summing well
1 16 bit # of pixels
shift rows into ser reg
1 16bit #of rows

clear pixels in ser reg
1 16bit #ofpixels
clear rows
1 16bit #of rows

read pixels
1 16 bit # ofpixels
read rows
1 16bit #of rows

perform anti-blooming

10.3 DSP Parameters

17-2

address parameter
x:0 ccd_ser
x: 1 bin_ser
x:2 pre_ser
x:3 under_ser
x:4 org_ser
x:5 read_ser
x:6 post_set
x:7 over_ser
x:8 ccd_par
x:9 bin_p
x: 10 org_par
x: 11 read_par
x: 12 post_par
x: 13 over_par
x: 14 pdir_camO
x:15 pdir_caml

descriotion
serial
serial
serial
serial
serial
serial
serial
serial
parallel
parallel
parallel
parallel
parallel
parallel
parallel
parallel

register length
binning number
register extension length
register underscan
prescan length
read length
postscan length
register overscan

register length
binning number
prescan length
read length
postscan length
register overscan
shift direction for CAM0
shift direction for CAM 1

17.4 Creating Custom DSP56001 Software

The programmer wishing to make changes to the DSP56001
software may do so using the tools provided. The DSP software must
be in its fully assembled form, that of the Motorola ".lod" file such as
that produced by the DSP assembler. This assembler is available on
several platforms, IBM compatable, Macintosh, and Sun workstation.
The assembled code is stored in the 68HCll's FORTH dictionary using
the DNLD command and may be stored in the EEPROM by issuing the
STORE command. The DSP is initialized in its usual way by executing
the DSP-BOOT and DSP-DUMP commands, which reset the DSP in

bootstrap mode, and dump the code to the DSP through the host
interface.

17-3

18. System Performance

Readout noise and Gain:

speed gain (e-/ADU) noise (e-)
20 kHz 0.57 3.6

10 kHz 0.21 2.5

5 kHz 0.09 2.4

Readout noise was affected by CCD temperature. The optimum

performance was achieved between -60C and -100C. At lower or

higher CCD temperature the noise increased rapidly (see graph Bias

RMS vs Temperature).

CTE was good at all temperatures.

both serial and parallel registers

CTE was at least 0.99999 in

The bias and gain stability was excellent as is demonstrated in

the graph "Bias Statility vs Time".

9-1

O

°_

E

o4

--5
O

,5..

o

O

E
co

I--- =_
a

Or) O

n"

°_

nn

t-
r-

r"-
O

ru0

Od
O')

u3

O'_

(1)

(1)
O.

E
q)
h-

e"
(0
(1)

00
(0

°_

rn

O

o_

O..
E

,e,,a

O.

o

O

T"

Z

o

cO

a

O
O

LO

h_

c-

(0
c-

O

6O

LO
O4

• mO

O
O4
,_.

s...

LO
9"

o LO
•,- o

ueel_se!B

I

o
o
,_-

I

LO
O_
09

O
O_
CO

O

O
O4

Q

o

|

o
_o

i

o
i

O
o

o
¢q

o

O
to

00
cO

(1)
O_
E
(1)

h--

O
(J

220

Bias Stability AIS1 Channel 0 CCD Output Amplifier B

a
<

215

210

205

200

195

0 8 15 23 30

Time (minutes)

38 45 53 60

: min -_ max mean

Bias Stability vs Time AIS1 Channel 1

Amplifier C

CCD Output

395

390

385

380
< 375

370

365

360
0 7 13 20 27 33 40 47 53 60

Time (minutes)

"- min • max mean

linearity plot of AIS1 channel 1 #1 9/13/92 3P

30000

25000
_>,
om

20000

•_- 150O0
C

10000
E

5O0O

0

100 350 600 850 1100 1350 1600

exposure time (msec

linearity chart 2 for linlchanl RMS vs exptil

1200

1000

800

600

400

200

0

100

I I I I I I I I I I] I I I I I I I f I I I I P I I I I I I I I I

350 600 850 1100 1350 1600

exposure time (msec

Appendix A: Camera Controller FORTH Source Code

ais57.for Thu, Sep 24, 1992 9:41 AM 1

(COLD)

HEX

I00 TIB !

I00 TIB 2+ !

2OO DP

VERSION CR CR ." AIS revision 5.7 9/18/92 " CR ;

AIS.FOR forth code for control of the AIS _ camera systems

copyright 1992 Advanced Technologies
Division of Photometrics ltd.

HISTORY : revision 5.7

revision 5.6

revision 5.5

revision 5.4

revision 5.3

revision 5.2

9/18/92

added some of the features and con_nents from AIS2

5/9/92

first attempt at background exposures

sped up the dsp response checks

replaced "M-WAIT" with "0 MS-WAIT"

4/13/92

fixed long standing {though unobserved} bug

in DSPI6! wherein large numbers were handled wrong

3/17/92

minor char_ges to a variety of things

3/10/92

Changed timer functions to interrupts.

1/10/92

Added RTI for temp control

New state table structure

Complete reorganization

No longer backward compatabile

* some useful constants

0 CONSTANT FALSE

1 CONSTANT TRUE

(* some useful temporary storage locations

VARIABLE TEMPO

VARIABLE TEMPI

(* ***

(

(68HCII Registers

(................

(

(* declaration of constants representing 68hcli control registers and ports

(* not all are used in this code,

(* but all are made available for user cormmnds

HEX

B000 CONSTANT PORTA

B002 CONSTANT PIOC

B003 CONSTANT PORTC

B004 CONSTANT PORTB

B005 CONSTANT PORTCL

B007 CONSTANT DDRC

B008 CONSTANT PORTD

B009 CONSTANT DDRD

(* i/O PORT A DATA REGISTER

* PARALLEL I/O CONTROL REGISTER

I/O PORT C DATA REGISTER

OUTPUT PORT B DATA REGISTER

ALTERNATE LATCHED PORT C

DATA DIRECTION REGISTER FOR PORT C

* I/O PORT D DATA REGISTER

" DATA DIRECTION REGISTER FOR PORT D

aisST.for Thu, Sep 24, 1992 9:41 AM 2

BOC,A CONST.<,_ PORTE

{ BC 0E £ONST_:NT CFORC

B00C :DNST._TT OC!M

P_0OD CONST_JT OCID

B00E CONST._4T T_

(B010 CONST._NT TIC1

(B012 CSNST._NT TIC2

< B014 CONST._}_ TIC3

9016 CGNST.<_T TOCI

B01 ? CONST?-_NT TOC2

B01A CONSTA_NT TOC3

B01C CONSTANT TOC4

{ B0!E CONST._Cf TOC5

B020 CCNSTA_,_ TCTLI

B021 CONSTANT TCTL2

_022 CSNSTf-/qT _"94SKI

B023 CONST_ TFLGI

B024 CONST._T TMSK2

B025 CONSTAN_ TFLG2

B026 CONSTANT PACTL

B027 CONST._-I_T PACNT

B028 CONST,_rf SPCR

B029 CONST_ SPSR

B02A CGNST__ SPDR

(B02B CONST_ BAUD

i B@2C CONST;_NT SCCRI

(B02D CONSTANT SCCR2

(B02E CONSTANT SCSR

{ B02F CONSTANT SCDR

B030 CONSTANT ADCTL

B031 CONSTANT ADRI

B032 CONSTANT ADR2

B033 CONSTANT ADR3

B034 CONSTANT ADR4

(B035 CONSTANT BPROT

B039 CONSTANT OPTION

B03A CONSTANT COPRST

B03B CONSTANT PPROG

8030 CONSTANT HPRIO

B03D CONSTANT INITREG

B03F CONSTANT CONFIG

{ _ INPUT PORT E

(* COMPARE FORCE REGISTER
l .

(

(

{

r _

{
_r

OUTPU_ COMPARE ! AC._uN_'_ MASK REGISTER

OUTPUT COMPARE I ..C..,_N_ mT- DATA REGISTER

TIMER COUNTER REGISTER 16 BIT

INPUT CAPTURE i REGISTER 16 BIT

* INPUT CAPTURE 2 REGISTER 16 BIT

INPUT. CAPTURE 3 REGISTER 16 BIT

GO.PUT COMPARE 1 REGISTER 16 BIT

OUTPU_ COMPARE 2 REGISTER 16 BIT

OUTPUT COMPARE 3 REGISTER 16 BIT

OUTPUT COMPARE 4 REGISTER 16 BIT

OUTPUT COMPARE 5 REGISTER 16 BIT

TIMER CONTROL REGISTER i

TIMER CONTROL REGISTER 2

TIMER INTERRUPT MASK REGISTER i

TIMER INTERRUPT FLAG REGISTER i

TIMER INTERRUPT MASK R£GISTER 2

TIMER INTERRUPT FLAG .REGISTER 2

PULSE ACCUMULATOR CONTROL REGISTER

PULSE ACCUMULATOR COUNT REGISTER

SERI._L PERIPHERAL INTERFACE CONTROL REGISTER

SERIAL PERIPHERAL INTERFACE _-TATUS REGISTER

SERIAL PERIPHEraL INTERFACE DATA REGISTER

" SERIAL COMM%_ICATIONS INTERFACE BAU_ RATE REGISTER

SERIAL COMMU_¢ICATIONS I_ERFACE CONTROL REGISTER 1

SERIAL CO_iMU_ICATIONS INTERFACE CONTROL REGISTER 2

* SERIAL COMMUNICATIONS INTERFACE STATUS REGISTER

* SERIAL COMMUNICATIONS INTERFACE DATA REGISTER

ANALOG TO DIGITAL CONVERTER CONTROL REGISTER

_ALOG TO DIGITAL CONVERTER RESULT REGISTER 1

ANALOG TO DIGITAL CON%_RTER RESULT REGISTER 2

ANALOG TO DIGITAL CONVERTER RESULT REGISTER 3

* ANALOG TO DIGITAL CONVERTER RESULT REGISTER 4

SYSTEM CONFIGUIthTION OPTIONS

(* ARM/RESET COP TIMER CIRCUITRY

(* INTERNAL EEPROM PROGRAMMING CONTROL REGISTER

(* HIGHEST PRIORITY I-BIT iNT AND MISC

(* RAM AND I/O :MAPPING REGISTER

• COP, ROM, AND EEPROM _NABLES

(B7EC CONSTANT XIRQ_LINK

(B7E9 CONSTANT IRQ_LINK

B7E6 CONST.aATT RTILINK

B7E3 CONST_qT ICI_LINK

BTE0 CONSTANT IC2_LINK

BTDD CONSTANT IC3_LINK

BTDA CONSTANT OCILINK

BTD7 CONSTANT OC2LINK

Z7D4 CONST_/qT OC3_LINK

B7DI CONSTANT OC4LINK

B7CE CONSTANT OC5LINK

BTCB CONSTANT TOI LINK

B7C8 CONSTANT PAOVI_LINK

B7C5 CONSTANT PAII LINK

B7C2 CONSTA]_T SPIELINK

Bit Manipulations

useful words for performing bit manipulations

these words operate on the nurd_er currently on the top of the stack.

HE{

_ MASK-X leaves true if bit x set else false

(: MASK-iS 8000 AND ;

i : Y_ASK-14 4000 AND ;

aisS7.for Thu, Sep 24, 1992 9:41 AM 3

: MASK-13 2000 AND

: MASK-12 1000 AND

: MASK-If 0800 AND

: MASK-10 0400 AND

: MASK-9 0200 AND

: MASK-8 0100 AND

MASK-7 0080 AND ;

MASK-6 0040 AND ;

MASK-5 0020 AND ;

MASK-4 0010 AND ;

MASK-3 0008 AND ;

MASK-2 0004 AND ;

MASK-I 0002 AND ;

MASK-0 0001 AND ;

* T-X makes certain bit x is true regardless of current state

: T-15 8000 OR ;

: T-14 4000 OR ;

: T-13 2000 OR ;

: T-12 I000 OR ;

: T-If 0800 OR ;

: T-10 0400 OR ;

: T-9 0200 OR ;

: T-8 0100 OR ;

T-7 0080 OR ;

T-6 0040 OR ;

T-5 0020 OR ;

T-4 0010 OR ;

T-3 0008 OR ;

T-2 0004 OR ;

T-I 0002 OR ;

T-0 0001 OR ;

* F-X makes certain

: F-15 7FFF AND

: F-14 BFFF AND

: F-13 DFFF AND

: F-12 EFFF AND

: F-II F7FF AND

: F-10 FBFF AND

: F-9 FDFF AND

: F-8 FEFF AND

F-7 FF7F AND ;

F-6 FFBF .AND ;

F-5 FFDF :AND ;

F-4 FFEF :AND ;

F-3 FFF7 AND ;

F-2 FFFB AND ;

F-I FFFD AND ;

F-0 FFFE AND ;

bit x is false regardless of current state

EEPROM Memory

(

(

(

(

(* the following words deal with the off chip EEPROM

(* where we store the default system dictionary

(* eeprot and eeunprot are used to write protect the EEPROM

(* there are some funny numbers in here which are hard coded

(* and assume that the eeprom starts at $6000, which it does

(* right at the moment.

(* the addresses we want to write to, from the chips point

(* of view, are $5555 and $2AAA. these addresses are not

(* available for our EEPROM, but the bottom 14 bits must be

(* representing these addresses, so we will set the top bit

(* which the eeprom does not even see and write to it at

(* $D555 and $._%AA .

HEX

ai$S7.for Thu, $ep 24, 1992 9:41 AM 4

CODE- SL_B EEPRGT

CE C, D5 C, 55 C,

86 C, AAC,

A7 C, 00 C,

CE C, AA C, AA C,

86 C, 55 C,

A7 C, 00 C,

CE C, D5 C, 55 C,

86 C, A0 C,

A7 C, 00 C,

_9 C,

_qD-CODE

* LDX #SD55-_ !ST EPROM .ADDRESS

* LDAA #$AA IST DATA PATTERN

* $TAA 0,X SEND AN AA TO S5555
LDX _$AAAA 2ND EPROM ADDRESS

* LDAA #$55 2ND DATA PATTERN

* STAA 0,X SEND A 55 TO $2AAA

* LDX #$D555 3RD EPROM ADDRESS

* LDAA #$A0 3RD DATA PATTERN

* STAA 0,X SEND AN A0 TO $5555

* RTS _J_q_IRN

CODE- SU_ E_u _mIPROT

CE C, D5 C, 55 C,

86C, AAC,

A7 C, 00 C,

CE C, AA C, AA C,

86 C, 55 C,
A7 C, 00 C,

CE C, D5 C, =_5 C,

86 C, 30 C,

A7 C, 00 C,

CE C, D5 C, ._5 C,

86 C, AAC,

A7 C, 00 C,

CE C, AA C, AA C,

86 C, 55 C,

A7 C, 00 C,

CE C, D5 C, 55 C,

86 C, 20 C,

A7 C, 00 C,

39 C,

END-CODE

* LDX #SD555 IST EPROM ADDRESS

* LDAA #SAA IST DATA PATTERN

STAA 0,X SEND AN AA TO $D555
* LDX _$AAAA 2Nq] EPROM ADDRESS

* LDAA #$55 2ND DATA PATTERN

* STAA 0,X SEND A 55 TO SAAAA

* LDX #$D555 3RD EPROM ADDRESS

LDAA #$80 3RD DATA PATTERN

STAA 0,X SEND AN 80 TO SD555

LDX #$D555 4TH EPROM ADDRESS

LDAA #SAA 4TH DATA PATTERN

STAA 0,X SEND AN AA TO 5D555

* LDX #$AAAA 5TH EPROM ADDRESS

* LDAA #$55 5_H DATA PATTERN

* STAA 0,X SEiZD A 55 TO $AAAA

* LDX #SD555 6TH EPROM ADDRESS

* LDAA #S20 6TH DATA PATTERN

* STAA 0,X SEND A 20 TO $D555

* RTS ._ETLrRN

(EPROM represents where in EEPROM to start storing the dictionary)

{ we want to reserve some space for autostart routines etc. so we

{ start at 256 bytes above the actual start of the EEPRCM or $6100)

6000 CONSTANT EPROM

6104 CONSTANT EEDICT-START

200 CONSTANT DICT-START

: EE-! 2DUP ! BEGIN 2DUP @ = UNTIL DROP DROP ;

: EE-C! 2DUP C! BEGIN 2DUP C@ = UNTIL DROP DROP ;

the forth dictionary is stored in eeprom memory, but is run out)

of ram. at any time the user may use the following word "store")

to move the current dictionary to eeprom, this in and of itself)

is not all that useful, the next word "restore" will move the

dictionary from eeprom to ram, and restore the state of the

forth system to exactly where you were when you issued the store)

conlmand, this is also of limited use, because next time you

power up the system, restore is not available in ram to to be

called, another word, "astart!" defined at the end of this file)

is used to tell the 6811 what word we would like executed on the)

next restart. "restore" can be used as the autostart routine.

other words which include restore may also be defined as auto-

start words, but the routine name is hard coded and this file

would have to be edited, a detailed discussion of the whole

autostart process can be found inthe new micros manuals.

(STORE store the current state of the forth machine

(and the user dictionary to external EEPROM

VARIABLE PROMLOC

VARIABLE PROMCOUN_

_X

: STORE

0 PROMCOUNT

EEUNPROT

aisS7.for Thu, Sep 24, 1992 9:41 AM 5

EPROM I00 _ PROMLOC !

HERE PROMLOC @ EE-!

PROMLOC @ 2+ PROMLOC !

DICT-START PROMLOC @ EE-!

PROMLOC @ 2+ PROMLOC !

CR ." storing user dictionar%' ... " CR

HERE DICT-START DO

I C@ DUP PROMLOC @ C@ = IF DROP

ELSE PROMLOC @ EE-C! PROMCOUNT @ i+ PROMCOUNT !

mEN

PROMLOC @ I+ PROMLOC !

LOOP

" storing FORTH variables ... " CR

84 6 DO

I C@ PROMLOC @ EE-C!

PROMLOC @ i+ PROMLOC !

LOOP

EEPROT

CR ." store complete. " CR

" dictionary length: " HERE 200 - U. CR

" bytes updated: " PRCMCOUNT @ U. CR

EEPROT ;

HEX

: RESTOR

HEX

CR ." restoring user dictionary " CR

6104 * START ADDR. OF DICTONARY IN EEPROM

200 * START ADDR. OF DICTIONARY IN RAM

6100 @ 6102 @ * GET END AND START OF RAM DICT

- * SUBTRACT TO GET DICTIONARY LENGTH

CMOVE * MOVE DICTIONARY

" restoring FORTH variables " CR

6100 @ * GET THE RAM DICTIONARY END ADDRESS

6102 @ * GET THE RAM DICTIONARY START ADDRESS

• NOW WE'VE GOT THE DICT LENGTH

6104 + * + EEDICT OFFSET = ADDR OF USER AREA IN EEPROM

6 84 CMOVE * MOVE USER ._REA

CR ." restore complete " CR

VERSION CR

FORTH Dictionary Manipulation
.............................

these words allow to cut or bridge the dictionary, they will return

an address and data. if this data is stored under the address, the

dictionary will recover to the original form

CUT-DICT must be called with the name's compilation address of the

first word to be cut off. Attention: also the forth words will not be

accessible anymore.

To cut all words below TEST: ' TEST CUT

^ this is the TICK

CUT-DICT 2- DUP CR ." ADDRESS: " . DUP @ ." DATA: " . 0 SWAP ! ;

BRIDGE-DICT is similar to _oT-DICT except it allows to continue

the dictionary at any point. This can be used to disable access

to a set of words

' WORD2 ' WORD1 BRIDGE-DICT disables all words below WORD2 including WORD1.

A_ ^-these are TICKS

Attention: make sure WORD2 is higher in the wordlist {further

away from TASK} than WORD1

ais57.for Thu, Sep 24, 1992 9:41 AM 6

5R!DGE-DICT 2- 9 TWAP 2- DUP CR ." .ADDRESS: DUP 9 ." DATA: " . ! ;

Analog To Digital Converter
...........................

the 68hcli includes an 8 charmel, multiplexed input successive

approximation analog to digital converter with sample and hold.

each conversion is accomplished in 32 e clock cycles, or about

16 usec. the converter has two modes of operation, single channel

mode or multiplexed input mode. in each of <hose modes the system

has two modes of opera,ion: single cycle or scanning, in single

cycle mode _ single conversion cycle is performed leaving four

results, in scarming mode the converter performs continously,

overwriting the data in adr! with data from the fifth conversion,

and _he daEa in the second with results from the sixth, and so on.

Dotel : in either mode a conversion cycle consists of four

conversions, in single channel mode this means that

four conversions will be performed on <he input

oha_nei before the conversion complete flag will be

set, with results being stored in adr!-adr4.

note2 : any "writes to the control register, adctl, will

initiate a conversion cycle, writing to adctl is

the only way to initiate a conversion, all words

below which end with "adctl c!" actually start a

conversion cycle.

note3 : to use the adc the adpu bit in the option register

must be set. it usually is. to check it use the

forth word ado-on? defined below, and the word

adc-on to turn it on if its not.

: ADC-ON?

: ADC-ON

: ADC-OFF

OPTION C@ MASK-7 ; (* true if analog to digital converter

(* system is turned on, false otherwise

OPTION C@ T-7 OPTION C! (* turns converter on.

i 0 MS-WAIT ; { * a I@0 usec delay is required

(* before using the converter.

OPTION C@ F-7 OPTION C! ;

: SET-SCAN ADCTL C@ T-5 ADCTL C! ; (* set continuous conversions

SET-NOSCAN ADCTL C@ F-5 ADCTL C! ; (* set single conversion cycle

SET-SINGLE

SET-CH0

SET-CHI

SET-CH2

SET-CH3

: SET-CH4

: SET-CH5

: SET-CH6

: SET-CH7

ADCTL C@ F-4 ADCTL C! ; (* SETS SINGLE CHANZIEL MODE

SET-SINGLE ADCTL C@ F-0 F-I F-2 F-3 ADCTL C! ;

SET-SINGLE ADCTL C@ T-0 F-I F-2 F-3 ADCTL C! ;

SET-SINGLE ADCTL C@ F-0 T-I F-2 F-3 ADCTL C! ;

SET-SINGLE ADCTL C@ T-0 T-I F-2 F-3 ADCTL C! ;

SET-SINGLE ADCTL C@ F-0 F-I F-2 T-3 ADCTL C! ;

SET-SINGLE AFTT_L C@ T-0 F-I F-2 T-3 ADCTL C! ;

SET-SINGLE ADCTL C@ F-0 T-I F-2 T-3 ADCTL C! ;

SET-SINGLE ADCTL C@ T-0 T-! F-2 T-3 ADC_ C! ;

: SET-MLZ-T

: SET-GFPI

: gET -G::I?::

ADC -DC._F ?

ADCTL C:9 ';_-4 "-"qh :'i ; ! _ P:TTE A?.C 7:; -m -,'_- _.{gD--

....... _.C_ C:_.--_._ =-.,_ ;,,_,_T._C' ; " USE INPr/P," GROUP!, <_0-3

.... , 'r • " '.;_--2 INPUT G_.©UP2, CH4-7:£7-,.F.:L7 ._._,;. ,.7:_ ?-3 F-'! ,_;..._. CJ

ACce. L ,_-:_9".lAgi<--7 ; (: TRUE IF A :20NVERSIC-_T _EC,UENCF IS COMPLETE

aisS7.for Thu, Sep 24, 1992 9:41 AM 7

(FETCH THE R£SU_TS OF THE CONVERSION)

: ADRI@ BEGIN ._DC-DONE? UNTIL ADRI C@ ;

: ADR2@ BEGIN ADC-DONE? U_NTIL ADR2 C@ ;

: ,_DR3@ BEGIN ADC-DONE? UNTIL ADR3 C@ ;

: ADR4@ BEGIN ADC-DONE? UNTIL ADR4 C@ ;

: 4ADC@ BEGIN ADC-DONE? U_NTIL

ADRI C@ ADR2 C@ ADR3 C@ ADR4 C@ ;

* FETCH #i

* FETCH #2

FETCH #3

* FETCH #4

* FETCH THEM ALL

DECIMAL

(TEMP@ expects a number from 0 - 3 on the stack and measures that temperature channel)

• TEMP@ SET-NOSCAN SET-SINGLE

DUP 0 = IF SET-CH0 THEN

DUP 1 : IF SET-CHI THEN

DUP 2 : IF SET-C£2 THEN

DUP 3 = IF SET-CH3 THEN

4ADC@

+

SWAP ROT

+

+

4 /

200 -

sWAP

DUP 0 : IF CR ." CHANNEL 0

DUP i : IF CR ." cHANNEL I

DUP 2 : IF CR ." CHANNEL 2

3 = IF CR ." CHANNEL 3

." DEG C " ;

{ no continuous conversions, one channel only

(get all 4 results

(add top two results

(get other two on top

(add those two

(add the results

(average them

(account for offset

TEMPERATURE : " THEN

TEMPERATURE : " THEN

TEMPERATURE : " THEN

TEMPERATURE = " THEN

: TEMPO@

: TEMPI@

: TEMP2@

TEMP3@

0 TEMP@ ;

1 TEMP@ ;

2 TEMP@ ;

3 TEMP@ ;

TIMER ROUTINES

a variable TIME is incremented every millisecond by an interrupt routine.

functions which want to wait a given number of milliseconds simply poll this

variable until it is equal to ar greater than the desired stop time.

this makes it a lot more accurate, as well as making it a lot simpler to

perfrm other tasks during this time. We are no longer so busy polling the

timer directly that we have no time for anything else.

2VARIABLE TIME (continuoulsy updated millisecond timer)

(assembler routines to fetch and store the time are required to avoid collisions

(with the timer routine itself, without interrupting it significantly.

HEX

CODE-SUB TIME@

OF C, (SEI

FC C, TIME 2+ , (LDD TIME+2

18 C, 09 C, (DEY

ais57.for Thu, Sep 24, 1992 9:41 AM 8

END-CODE

18 C, 09 C, (DEY

i8 C, ED C, 00 C, (s-TD 0,Y

FC C, TIME , (LDD TIME

18 C, O9 C, (DEY

18 C, 09 C, (DEY

18 C, ED C, 00 C, (STD 0,Y

0E C, (CLI

29 C, (RTS

CODE- SU_ TLME

OF C,

18 C, EC C, 00 C,

18 C, O8 C,

18 C, 08 C,

FD C, TIME ,

18 C, EC C, 00 C,

18 C, 08 C,

18 C, O8 C,

FD C, TIME 2+ ,

0E C,

39 C,

_D-CODE

SEI

LDD 0, Y

INY

INY

STD TIME

LDD 0, Y

INY

INY

STD TIME+2

CLI

RTS

(the following are used by the exposure routines defined near the end of this file.

(they are defined here so as to be accessable to the timer routine immediatley below.

2VARIABLE EXP_LEFT

VARIABLE EXPOSING

(assembler routines to fetch and store EXP_LEFT are required to avoid collisions

(with the timer routine itself without interrupting it significantly.

H_X

CODE-_JB

END-CODE

EXP_LEFT@

OF C, (SEI

FC C, EXP LEFT 2+ , (LDD

18 C, 09 C, (DEY

18 C, 09 C, (DEY

18 C, ED C, 00 C, (STD

FC C, _XP_LEFT , (LDD

18 C, 09 C, (DEY

18 C, O9 C, (DEY

18 C, ED C, 00 C, (STD

0E C, (CLI

39 C, (RTS

EXP_LEFT+ 2

0,Y

EXP_LEFT

0,Y

CODE-SUB EXPLEFT!

OF C,

18 C, EC C, 00 C,

18 C, O8 C,

18 C, O8 C,

FD C, EXP LEFT ,

18 C, EC C, 00 C,

18 C, 08 C,

18 C, 08 C,

FD C, _<P_LEFT 2+ ,

0E C,

39 C,

_LND-CODE

SEI

LDD 0, Y

INY

INY

STD EXP LEFT

LDD 0, Y

INY

INY

STD EXP_LEFT+2

CLI

RTS

(all this routine needs to do 1s increment the time and set the next interrupt

(to occur one millisecond from now. Someday soon we might want to check if it's

(time to perfo!nn housekeeping tasks and do some safety checks. Is the backplate

(too hot? Is the CCD too cold? or too hot?? Stuff like that.

aisS7.for Thu, Sep 24, 1992 9:41 AM 9

(now we're attempting %o do background exposures by decrementing a counter in this

(interrupt service routine. We can check it at .any time to see if the exposure is

(done. we can do other things while the exposure proceeds.

(we are using the output compare number 4 because i is reserved for other uses in the

(6811, and the pins associated with oc2 and oc3 are used for shutter control.

H_X

CODE TIMER

OF

$6

B7

FC

C3

FD

24

FC

C3

?D

C,

C, I0 C,

C, TFLGI ,

C, TIME 2+ ,

C, 1 ,

C, TIME 2+ ,

C, 09 C,

C, TIME

C, 0001

C, TIME

FC C, TOC4

C3 C, 07D0

FD C, TOC4

B6 C, EXPOSING !+ ,

27 C, 14 C,

FC C, EXP_LEFT 2+ ,

83 C, 1 ,

FD C, EXP_LEFT 2+ ,

24 C, 09 C,

FC C, EXP_LEFT ,

83 C, 1 ,

FD C, EXP_LEFT ,

FC C, EXP_LEFT ,

26 C, 0E C,

FC C, EXP_LEFT 2+ ,

26 C, 09 C,

7F C, EXPOSING !+ ,

CE C, PORTA ,

ID C, 0 C, 60 C,

0E C,

3B C,

END-CODE

sei

idaa

staa

idd

addd

std

bcc

idd

addd

std

nocar_'-f

Idd

addd

std

idaa

beq

idd

subd

std

bcc

idd

subd

STD

nexp

idd

bne

idd

bne

clr

Idx

bclr

not_done

cli

rti

_$i0

tf!gl *

time+2 *

#i *

time+2 *

nocarry *

time *

#I *

time *

disable other interrupts

clear inter_apt flag

fetch _he lower half of time

increment it,

store it,

if it didn't overflow, then don't

fetch the upper half

increment it,

and store it,

just continue.

toc4 * fetch the last compare value

#2000 * add 2000 to it

toc4 * store as next compare value

EXPOSING * fetch exposure flag

nexp * if not exposing leave

expleft+2 * fetch lower half of counter

#i * subtract one from it

expleft+2 * store it

nexp * if no borrow, then don't

exp_left * fetch top half

#i * decrement it

EXP_LEFT * and store it

exp_left

not_done

exp_left+2

not_done

exposing

#porta

0,x #$60

* If top half of exp left

* is not equal to zero,

* or the bottom half is not,

* were not done.

* If we are done,

* clear exposure flag,

* point at port A

* and close the shutters.

* enable ozher interrupts

* and leave.

(install the jump to our TIMER function at the appropriate address)

HEX

CODE-SUB CLEAR-CC-MASKS

86 C, 00 C, (LDAA #0)

06 C, (TAP)

39 C, (RTS)

END-CODE

: STOP-TIMER 0 TMSKI C! (TURN OFF THE INTERRUPT)

0 TCTLI C! (STOP THE COMPARE OUTPUT ON PA4)

INSTALL-TIMER

STOP-TIMER

7E DUP OC4_LINK C@ : IF DROP ELSE OC4_LINK EEC! THEN

[' TIMER @ >< FF AND] LITERAL

DUP OC4_LINK i+ C@ = IF DROP ELSE OC4_LINK i+ EEC! THEN

[' TIMER @ FF AND] LITERAL

DUP OC4_LINK 2+ C@ = IF DROP ELSE OC4_LINK 2+ EEC! THEN ;

ais57.for Thu, Sep 24, 1992 9:41 AM 10

STOP-TIMER

CLEAR-CC-.MASKS

0 0 TIME

l_000 TOC4

04 TCTLI C!

00 OCIM C

00 OCID C

FF TFLGI 2

9Z<

START-TIMER

STOP-TIMER

!NIT-TIeR

i0 794$KI C! ;

ZERO THE TIME VARAIBLE }

START WITH COMPARE AT TC.W? : S8000)

SET TO TOGGLE PA4 ON EACH COMPARE)

OUTPUT COMPARE 1 DOES NOTHING)

CLEAR ANY AND ALL COMPARE FLAGS)

(ENABLE THE INTERRUPT)

Time Measurement

MS-WAIT expects a 32 bit number on the stack.

It waits that many ,milliseconds.

: MS-WAIT (D -)

2DUP 0= SWAP 0= AND NOT

IF TIME@ D+ BEGIN 2DUP TIME@ DU< UNTIL

THEN 2DROP

(M-WAIT expects a 16 BIT number on the stack.

{ it waits that many milliseconds.

: M-WAIT { W -

0 MS-WAIT ;

TEMPERATURE CC}2?ROL LOOP SOFTWARE

the general scheme is as follows ...

a real time interrupt is intiated which interrupts the 6811 every 32.77 ms

each time the interrupt is received, the 6811 fetches and increments the

tmp_cnt variable storing the result and comparing it to the max_tmp cnt

variable, if less than, the 6811 simply returns, if equal or greater, which

should not occ'ar, the 6811 checks the temperature against the desired temp.

if less than desired, the 6811 fetches the heater value and increments it. if

the measured temp is greater than the desired, the 6811 decrements the heater value.

if the measured temp equals the desired, no action is taken.
HEX

VARIABLE ACT TMP

VARIABLE DES_TMP

VARIABLE TMP_CNT

VARIABLE MAX_CaNT

VARIABLE DAC_VAL

VARIABLE DAC_INC

B200 CONSTANT. TMP DAC

actual temp, most recently measured temperature

desired temperature

temperature loop counter

howmany times to loop before checking tempreature

value most recently written to the temp control DAC

value to add or subtract from dac_val when nec.

location of temperature control DAC

CODE-SUB TEMP-CTL

OF C,

86 C, 40 C,

B7 C, BO25 ,

B6 C, TMP_CNT I+ ,

4C C,

B7 C, TMP_CNT i+ ,

B1 C, MAX CNT I÷ ,

25 C, 7O C,

sei

ldaa

staa

ldaa

inca

staa

cmpa
blo

#$40

Sb025

tmp_cnt

tmp_cnt

max_cnt
exit

* mask other interrupts

* clear RTI flag

* fetch current count into acc a

* increment it

* and store a copy in tmp_cnt

* then compare to max count

* if max > current, exit

aisS7.for Thu, Sep 24, 1992 9:41 AM 11

4F _

B7 C, TMP CNT i *

B6 C, B039

84 C, BF C,

8A C, 80 C,

B7 C, B039

86 C, 02 C,

B7 C, B030

B6 C, B030

84 C, 80 C,

27 C, F9 C,

18 C, 3C C,

18 C, CE C, 0 ,

F6 C, B031 ,

18 C, 3A C,

F6 C, B032 ,

18 C, 3A C,

F6 C, B033 ,

18 C, 3A C,

F6 C, B034 ,

18 C, 3A C,

18 C, 3F C,

18 C, 38 C,

O4 C,

04 C,

F7 C, ACT_TMP I+

F1 C, DES_TMP I+

27 C, 2E C,

22 C, 16 C,

adwait

clra

staa

idaa

anda

oraa

staa

idaa

staa

!daa

anda

beq

pshy

ldy
idab

aby
ldab

aby
ldab

aby
ldab

aby
xgdy
puly
isrd

Isrd

tmp_cnt

$b039

#$bf

#$8O

$b039

#2

Sb030

$b030

;$80

adwait

#0

$b031

$b032

$b033

$b034

stab act_tmp

cmpb des_imp

beq exit

bhi ins_hi

* zero accumulator a

and reset counter

* get option register into acca

* make sure csel bit is clear

* make sure adpu bit is set

* store that control register

* start 4 conversions on channel two

* get adc control reg into acc a

* conversion complete?

if not set, go check again

* push y onto stack

* clear reg y

* get ist adc result

* add b to y

* get 2nd adc result

* add b to y

* gen 3rd adc result

add b to y

* get 4th adc result

* add b to y

* move y to double acc

* restore reg y

* divide acc by 2

* divide by 2 again, accd = avg

* store as current temperature

* compare to desired

* if the temp is right, just leave

* if actual > desired, it's too high

(* if the temperature is too low and the current dac setting

(* is more than ff - dac_inc, then set the dac to $ff.

its_lo

86 C, FF C,

B0 C, DAC_INC i+ ,

B1 C, DAC_VAL i+ ,

_ C, 04 C,

86 C, FF C,

2O C, 18 C,

Idaa #$ff

suba dac_inc

cmpa dac_val

bhi inc_it

idaa #$ff

bra store_it

* if dac_val < {ff - dac_inc}

* otherwise, set dac__val to $ff

increment

(* if current dac vcal is less than ff - dac_inc , then

(* increment the dac_val by dac_inc

(inc_it

B6 C, DAC_VAL i+ , (idaa dac_val

BB C, DAC_INC i+ , (adda dac_inc

20 C, I0 C, (bra store it

* get current dac value

* increment dac_val by dac_inc

* store it and leave

(* if the temperature is too high and the current dac setting

(* is greater than increment value, then decrement dac val

(* by increment value, otherwise decrement by one.

B6 C, DAC_VAL I+ ,

27 C, Ii C,

B1 C, DAC_INC i+ ,

_ C, 03 C,

4A C,

2O C, 03 C,

B0 C, DAC_INC i÷ ,

B7 C, DAC_VAL i+ ,

its_hi

Idaa dac_val

beq exit

cmpa dac_inc

bhi dec_lots

deca

bra store_it

dec_lots

suba dac_inc

store it

staa dac_val

* if dac_val : O, just leave

* if dac_val > dac_inc

* ... dec dac_val by dac_inc

* decrement by one

* store it and leave

* decrement dac_val by dac_inc

* store the value for future reference

ais57.for Thu, Sep 24, 1992 9:41 AM 12

B7 i, TMP DAC !+ ,

0E C,

3B C,

END-CODE

staa tmp_dac

exit cli

rti

end of TEMP-CTL definition)

write it to the dac

* ur_nask interrup%s

DECIMAL

: !NIT-TE4P 0 ACT_TMP ! 150 DES 794P ! 0 TMP__CNT ! 5 MAX rCNT !

0 DAC_VAL { i0 DAC_INC ! 0 q}4_P_DAC ! ;

:he address =o which the 6811 will jump when it gets the interrupt }

install the ju_mp to our function at that address)

: STOP-TEMP-CTL

79{..SK2C@ F-6 TMSK2 C! ;

ST._dRT-TEMP-CTL

STOP-TEMP-CTL

CLEAR-CC-MASKS

INIT-T_mMp

PACTL C@ T-! T-O PACTL C!

TMSK2 C@ T-6 TMSK2 C!

I set rti to 32.77 milliseconds)

(enable the interrupt)

INSTALL-TEMP-CTL

STOP-TEMP-CTL

STOP-TIMER

7E DUP RTI_LINK C@ : IF DROP ELSE RTI_LINK EEC! THEN

[' TEMP-CTL @ x FF AND] LITERAL

DUP RTI_LINK I+ C@ = IF DROP ELSE RTI_LINK I+ EEC! THEN

[' T_iP-CTL @ FF AND] LITERAL

DUP RTI_LINK 2+ C@ = IF DROP ELSE RTI_LINK 2+ EEC! THEN

DECIMAL

: CHK-TMP

: WATCH-TMP

ACT _MP @ 200 - ." TEMP : " . ." DEG C " CR ;

BEGIN CHK-TMP 2000 0 MS-WAIT ?TERMINAL UNTIL ;

: CHK-CNT TMP CNT @ U. CR ;

: WATCH-CNT BEGIN CHK-CNT 2000 0 MS-WAIT ?TERMINAL UNTIL ;

: CHK-DAC

: WATCH-DAC

: CHK-RTI

DAC VAL @ U. CR ;

BEGIN CHK-DAC 2000 0 MS-WAIT ?TERMINAL UNTIL ;

CR

ACT TMP @ ." ACT_TMP : " U. CR

DES TZfP @ ." DES_TMP : " U. CR

TMP C_ @ ." TMP_C._ : " U. CR

MAX CNT @ ." MAX_CNT : " U. CR

DAC_JAL @ ." DAC_VAL = " U. CR ;

: _mSMp! 200 + DES_TM.P ! ;

: TEMP? ACT TMP @ 200 - . CR ;

: CCD-TEMP? ACT__P @ 200 - ." CCD te_rperature = "

: TEMP-DIFF? DES TMP @ ACT TMP @ - U. CR ;

." deg C" CR ;

aisS7.for Thu, Sep 24, 1992 9:41 AM 13

(DSP RELATED FUNCTIONS

(

(DEFINITIONS OF CONSTANTS REPRESENTING DSP HOST PORT LOCATIONS

HEX

CO00 CONST_TT ICR

C001 CONST_JT OJR

C002 CONSTANT ISR

C003 CONSTANT IVR

(* C004 NOT USED

C005 CONSTANT _XH

C006 CONSTANT RXM

C007 CONSTANT RXL

C005 CONSTANT TXH

C006 CONSTANT TXM

C007 CONSTANT TXL

* INTERRUPT CONTROL REGISTER

* COMMAND VECTOR REGISTER

* INTERRUPT STATUS REGISTER

* INTERRUPT VECTOR REGISTER

* RECEIVE REGISTER HIGH BYTE

* .RECEIVE REGISTER MIDDLE BYTE

* RECEIVE REGISTER LOW BYTE

* TRANSMIT REGISTER HIGH BYTE

* TRANSMIT REGISTER MIDDLE BYTE

* TRANSMIT REGISTER LOW BYTE

* SHOW-REGS simply fetches and prints the values in the DSP registers

this is useful for debugging, but serves no real purpose

: SHOW-REGS

CR

ICR C@ ." ICR :

ISR C@ ." ISR :

CVR C@ ." CVR :

RXH C@ ." RXH :

_ZM C@ ." _ :

9XL C@ ." _XL :

CR

CR

CR

CR

CR

CR ;

DSPCTL IS THE DSP CONTROL LATCH WHICH THE 6811 MAY WRITE TO IN ORDER

TO AFFECT THE DSP'S OPERATION.

CI00 CONSTANT DSPCTL

: DSP-RESET

FE DSPCTL C!

FF DSPCTL C! ;

: DSP-IRQA
FB DSPCTL C!

FF DSPCTL C!

* DSP RESET LINE LOW

* DSP RESET LINE HIGH

* IRQA LOW

* IRQA HIGH

: DSP-IRQB

FD DSPCTL C!

FF DSPCTL C!

* IRQB LOW

* IRQB HIGH

: DSP-BOOT

FF DSPCTL C!

FC DSPCTL C!

FD DSPCTL C!

FF DSPCTL C! ;

* EVERYTHING HIGH

* DSP RESET LOW

* DSP RESET HIGH

DSP RESET HIGH

IRQB LOW

IRQB LOW

IRQB HIGH

- CLR-TXH-TXM 00 DUP TXH C! TXM C! ;

(ROUTINES FOR INTERPRETING THE HOST REGISTERS

: RY/3F? ISR C@ MASK-0 ; * LEAVES TRUE IF RXDF BIT SET

: TXDE? ISR C@ MASK-I ; * LEAVES TRUE IF TXDE BIT SET

(: HF2? ISR C@ MASK-3 ; (* TRUE IF HF2 SET

(: HF3? ISR C@ MASK-4 ; (* TRUE IF HF3 SET

(: HREQ? ISR C@ MASK-7 ; (* TRUE IF DSP IS ASSERTING HREQ

: T-HF0 ICR C@ T-3 ICR C_ ; * SETS HF0 TO TRUE

: F-HF0 ICR C@ F-3 ICR C! ; * SETS HF0 TO FALSE

aisS7.for Thu, $ep 24, 1992 9-41 AM 14

: T-HFI

: F-HF!
ICR C@ T-4 ICR C! ; (* SETS HFI TO TRUE

ICR C9 F-4 !CR C! ; (* SETS HFI TO FALSE

when the DSP is executing a host con_nand, it sets hf2 in the ISR to a 1)

I DSP-BUSY checks that flag

: DSP-BUSY? ISR C@ MASK-3 ;

i DSP-WAIT waits 'mntil the DSP is no longer busy)

: DSP-WAIT BEGIN ISR C@ MASK-3 0= UNTIL ;

VARIABLE DSPOK

: h'g! { VECTCR_ -

DUP 20 < IF T-7 C_TR C!

ELSE ." ERROR : connmnd vector too large "

THEN ;

DSPS@, DSP!6@, DSP248, DSPS!, DSPI6!, and DSP24!

these words are used to fetch and store data from .and to the DSP

some checking is performed to see that the data registers are ready

read from DSP DSP8@

DSPI6@

DSP24@

fetches 8 bits from rx! reg

fetches 16 bits from DSP zn<m and rxi registers

fetches 24 bits from DSP rxh, rxIn, and axl registers

write to DSP DSP8_

DSPI6_

DSP24_

write 8 bits to DSP txl register

write 16 bits to DSP t_n and txl registerss

write 24 bits to DSP txh, txIn and txl registers

HEX

REPORT-DSP-ERROR

" ERROR : DSP not responding " CR ;

: WAIT-DSP@

FALSE DSP OK ! (guilty until proven innocent)
200 0 DO RXDF?

IF TRUE DSP_OK ! LEAVE

THEN

LOOP ;

: DSP8@ (-B)

WAIT-DSP@

DSP_OK @ IF RXL C@

ELSE REPORT-DSP-ERROR

;

: DSPI6@ (-W)

WAIT-DSP@

DSP_OK @ IF RXM C@ I00 * RXL C@ +

ELSE REPORT-DSP-ERROR

THEN ;

(: DSP24@ (- D)

(WAIT-DSP@

(DSP OK @ IF RXH C@ RXM C@ I00 * RXL C@ + SWAP ;

i ELSE REPORT-DSP-ERROR

{ THEN ;

WAIT-DSP!

FALSE DSP OK ! (guilty until proven innocent)

ais57.for Thu, Sep 24, 1992 9:41 AM 15

: DSP8_

: DSPI6_

: DSP24_

20O 0

DO TXDE?

IF TRUE DSP_OK ! LEAVE

THEN

LOOP ;

(B -)

WAIT-DSP_

DSP_OK 9 IF 0 TXH C! 0 TXM C! TXL C!

ELSE REPORT-DSP-ERROR

_£EN ;

(W - >

WAIT-DSP

DSP CK @ IF 0 TXH C! DUP >< TXM C! TXL C

ELSE REPORT-DSP-ERROR

7}{EN ;

(D -)

WAIT-DSP

DSP_OK @ IF TXH C! DUP >< TXM C! TXL C

ELSE REPORT-DSP-ERROR

TH_N ;

DSP Software Support

routines for getting files from the pc to the dsp

dsp code is downloaded from the host computer and stored in eeprom.

two buffers are stored, one is 256 bytes long and the other is of variable

length, the i00 byte buffer is typically used to store a bootstrap program

to load the dsp's external program memory from the larger buffer.

HEX

(XLATE ACCEPTS AN ASCII VALUE ON THE STACK AND TRANSLATES IT INTO THE HEX VALUE)

(WHICH IT .REPRESENTS. FOR INSTANCE: THE VALUE 41 WILL BE .REPLACED BY $0A)

: XLATE (ASCII-VALUE - HEX-VALUE

DUP DUP
2F > SWAP 40 < AND

IF 30 -

ELSE DUP DUP 40 > SWAP 47 < AND

IF 37 -

ELSE

CR ." ERROR : DNLD failure, illegal character recieved " CR

TH_N

THEN ;

HEX

VARIABLE END-ADDR

VARIABLE BOT-BUF

VARIABLE TOP- BUF

HERE END-ADDR

2 ALLOT

HERE BOT-BUF

1200 ALLOT

HERE TOP-BUF

DNLD

CR ." expecting DSP code file in MOTOROLA *.LED format ... " CR

KEY DUP _--MIT DUP 0D = IF 0A EMIT THEN (drop first

BEGIN

KEY DUP EMIT DUP 0D = IF 0A EMIT THEN 5F = (drop characters until _)

ais57.for Thu, $ep 24, 1992 9:41 AM 16

BEG_N

Y_Y DUP _{IT DUP 0D = IF 0A EMIT THEN 0D : (drop chars to line end)

_IF.IL

TOP-BUT @ BOT-BUF @

DO KEY DUP 5F =

IF EMIT i !- E_qD-ADDR ! LEAVE

ELSE DUP 20 =

IF EMIT R> I- >R

ELSE DUP 0D =

IF _--'MIT0A EMIT R> i- >R

ELSE DUP XLATE i0 _ SWAP EMIT

KEY DUP XIATE ROT + I C! EMIT

THe{

THEN

_-7£EN

LOOP

BEGIN (drop rest to prevent that

[/_Y DUP EMIT DUP 0D = IF 0A EMIT THEN 0D = (it will be executed

Lg_IL

CR ." Download completed " ;

(_ IF CHAR = " ")

(* STORE COUNT-AS END ADDR LEAVE)

(* IF ITS A SPACE

(* PRINT IT BUT DON'T COUNT IT

i * iF ITS A CR

(* DO CR-LF DON'T COUNT IT

(* ELSE XLATE MULT BY $I0

(DSP-DU_P DUMPS DSP CODE FROM ONE OF THE BUFFERS INTO _ DSP DATA REGISTERS

(IT IS ASSUMED THAT THE DSP IS EXPECTING THE DATA.

: DSP-DUMP

BOT-BUF @ 2- END-ADDR @ =

IF CR ." no DEP code in buffer -- DSP-DUMP aborted " CR

ELSE

END-ADDR @ BOT-BUF @ DO

I C@ TXH C_

I i+ C@ TXM C!

I 2+ C@ TXL C!

3 +LOOP

T-HF0

I0 0 MS-WAIT F-HF0 i0 0 MS-WAIT

THEN ;

"VARIABLE CHK__SUM

: CHKSL94

BOT-BUF @ 2- END-ADDR @ =

IF " no DSP code in buffer "

ELSE

0 CHK SUM

END-ADDR @ I+

BOT-BUF @

DO I C@ CHK_SUM @ + CHK SUM !

LOOP

" DSP chksula: " CHK_SUM @ U.

THEN ;

Configuration Tables

All CCD format parameters, CAM voltages, and timing information is

stored in arrays. Access to these array elements is provided via

either the array index or parameter name.

The following word, TABLE, is used to define a new state table.

It accepts the length of the array on the stac. This length is in words.

items in that table may then be accessed in the following manner :

N TABLE__NAME @ will return the value of the nth item in the table

aisS7.for Thu, Sep 24, 1992 9:41 AM 17

X N TABLE NAME will assign the value x to the nth item in the table

DECIMAL

(TABLE is used to create an indexed variable table)

TABLE (W -)

DEPTH i < IF CR ." ERROR : insufficient stack entries " CR

ELSE

CREATE 2 ALLOT 2* ALLOT

DOES> SWAP 2* +

THEN ;

Camera Configuration Parameters

...............................

one set of parameters is acceptable if all subarrays are centered

on the ccd. Jnich is usually acceptable

note: no checking is performed to see that any of these numbers

make sense, such checking typically limits flexibility, so just

try to keep it sensible.

The parameters may be separated into several groups, each relating to a

different aspect pf camera operation.

Format Parameters

The first group of parameters are considered 'format' parameters.

These parameters control the area on the CCD imager which will be read

during the next image acquistion cycle. The format parameters may be set

to any 16 bit value. They are considered unsigned numbers and range from

0 to 65535. No type of error checking is performed to assure that the

current parameters match the user's CCD or that valid image data will be

obtained. Complete flexibilty within the scope allowed by the geometry

implied by the parameters is pursued instead. It is up to the user to assure

that the parameters in use match his or her desires. Upon a system reset

the format parameters will be returned to the value stored in the EEPROM

memory. The format parameters may be stored there at any time using the STORE

co[_rnand, discussed above, which stores the entire FORTH dictionary.

Serial Read Parameters

......................

The serial register is read out based on a set of format parameters which

inloly the following geometry:

<<< I i........ I J.......... I I

prescan underscan origin read dimension postscan overscan

The readout operations are performed from left to right. The pixels in

the prescan, origin, and postscan are discarded. The pixels in the underscan,

the read dimension arid the overscan are read off the CCD imager. The discarded

pixels are in units of physical pixels and are not affected by the binning factor.

The others are read off the chip and binning is performed. The same binning

factor is used on the pixels in the underscan, read dimension , and overscan.

ais$7.for Thu, Sep 24, 1992 9:41 AM 18

_/picai!y,

prescan - {ur.derscan * binning factor} : serial extension length

and

origin _ {biruning factor * read dimension) - postscan >= CCD serial dimension,

hut this convention is not enforced. Not all users will care to use the

,_nderscan and overscan features. In this case the prescan, underscan, and overscan

parameters .may be set to zero and the following equation will be used.

origin ÷ {birm_ing factor * read dimension} + postscan = total CCD serial length

No effort is .made 50 enforce this convention, it is simply that, a convenient convention.

0 CCD_SER

1 BIN_SER

2 PRE_SER

3 UNDER SER

40RG_SER

5 RF-%D_SER

6 POST_SER

70VER_SER

CCD Serial Dimension :

This parameter represents the total length of the

CCD serial register. This includes any pixels in the serial

extensions on either end of the register. This parameter is

used by the DSP as the number of pixeis to discard when

it clears the serial register, it is irrelevent to those rows

'which are actually read.

Serial Birding Factor :

The serial birming factor is the number of pixels in the

serial register which will be shifted for each pixel

read. By binning pixels the image resolution is sacrificed

for higher signal %o noise ratio. In low light applications

or where the image data is one dimensional this ,may be used

to great benefit.

Serial Prescan

The serial prescan is the nmmber of pixels to discard before

performing the serial ur_derscan. The prescan is in units of

physical pixels and is not affected by the binning factor.

No image data is produced.

Serial Under Scan

The serial undrescan is the n,um_er of pixels to read after the

serial prescan. This parameter represents the number of

binned pixels to read. One data point is produced for each

_nit of under scan. Binning is performed.

Serial Read Origin

This number represents the number of pixels to be discarded

after performing the serial under scan. This parameter is in

units of physical pixels and is unaffected by the binning

factor. No image data is produced.

Serial Read Dimension

The value of this parameter represents the number of pixels

to read after the serial origin and before the postscan. These

pixels are represened in units of binned pixels. One data point

is acquired for each unit of read dimension. Binning is performed.

Serial Postscan

The value of this parameter represents the number of pixels to

discard after the read is performed. These pixels are represented

in units of physical pixels and are not affected by binning factor.

No image data is produced.

Serial Overscan

The value of this parameter represents the number of data points

_o be taken after the postscan is performed. These pixels are

represented in units of binned pixels. One data point is acquired

for each unit of serial overscan. Binning is performed.

ais57.for Thu, $ep 24, 1992 9:41 AM 19

Parallel Read Parameters

........................

The parallel register is read out based on a set of format parameters which imply the

following geometry:

<<< J I I I I

origin read dimension postscan overscan

The readout operations are perforTned from !eft to right. The rows in the origin

and post scan are discarded. The rows in the the read dimension and the overscan

are read off the CCD imager. The discarded rows are in units of physical rows and

are not affected by the binning factor. The others are read off the chip and

binning is performed. The same binning factor is used on the rows in the

read dimension and overscan.

8 CCD PAR

9 BINPAR

i00RG PAR

Ii READPAR

12 POST_PAR

13 OVERPAR

14 PAR DELAY

CCD Parallel Dimension

This para/_,eter represents the total length of the CCD parallel

regis%or+ This parameter is it clears the parallel register.

It is irreievent to those rows "which are actually read.

Parallel Binning Factor

The parallel binning factor is the number of rows in the

parallel register which will be shifted for each row

read. By binming rows the image resolution is sacrificed

for higher signal to noise ratio. In low light applications

or where the image data is one dimensional this may be used

to great benefit.

Parallel Read Origin

This number represents the number of rows to be discarded

before performing the parallel read. This parameter is in

units of physical rows and is unaffected by the bir,ning

factor. No image data is produced.

Parallel Read Dimension

The value of this parameter represents the number of rows

to read after the parallel origin and before the postscan. These

rows are represened in units of binned rows. Binning is performed.

Image data is produced.

Parallel Postscan

The value of this parameter represents the number of rows to

discard after the read is performed. These rows are represented

in units of physical rows and are not affected by binning factor.

No image daze is produced.

Parallel Overscan

The value of this parameter represents the number of rows to

be read after the postscan is performed. These rows are

represented in ,units of binned rows. Binning is performed.

Image data is produced.

Parallel Clock Delay Time

-Exposure Parameters

Two parameters are used when opening and closing the shutter. Since the shutter

takes a certain amount of time to open, and it would be undesirable to begin

to time the exposure or read out the CCD before the shutter motion had stopped,

these two parameters are provided to allow the user to set the delay which will

take place after the camera controller opens or closes the shutter. The values are

stored as 16 bit numbers representing milliseconds. Delay times may therefore

ais57.for Thu, Sep 24, 1992 9:41 AM 20

va_/ from 0 to 65.E35 seconds. If your shutter takes longer than this to open or

:lose, you will need to -write custom open and close routines.

20 CDELAY

21 CDELAY

time, in milliseconds, required for the shutter to open

time, in milliseconds, required for the shutter to close

The exposure 5ime for image acquisitions is stored as a 32 bit value in two

16 bit Darameters. The value represents the exposure time in milliseconds. The

exsosure time ..may therefore be set from 0 milliseconds to just over 7 weeks. This

should be sufficient to cover most applications.

22 EXP_T!ME_LO

23 EXPrTIMEHI

lower 16 bits of 32 bit exposure time

higher 16 bits of 32 bit exposure time

Certain camera cormmnds will clear the CCD as part of thier operation. These

corm_ands are typically high level image acquisition corm_ands. The number of times

that the CCD is cleared in these circumstances is controlled by the value of the

following parameter. A typical value for this parameter is two, but it may range from
0 to 6E535. A value of zero may be of use under some circ,mmstances where it is not

iesirabie to clear the imacer at all. A value of ! is acceptable under most conditions

wlnere a cleared CCD is desired. The default value typically assigned is 2 is conservative.

Values greater than 2 are likely to be useful only under unusual circumstances.

24 b%_ CLEARS n_mber of times to clear CCD per clear cycle

Acquisition Sequence Parameters
...............................

The camera may be operates in a sequenced acquisition mode. Each high level image

acquisition con_aand actually acquires a sequence of images based on the values of

these parameters. Continuous clearing ofthe CCD may be performed between images.

Clock recombination anti-blooming may be performed during exposures. The camera may

acquire images in a frame transfer mode. The camera readout may be performed at

either of two speeds.

25 MUM_IMAGES n_mber of images to acquire per image acquisition cycle

26 IM DELAY_LO

27 IM_DELAY_I

lower 16 bits of 32 bit delay between images in cycle

higher 16 bits of 32 bit delay between images in cycle

The default values of i for NUM_iMAGES and 0 for both !M DELAY HI and

LM_DELAYLO will produce i image per hih level conmand with no additional delay.

30 CCLEAR Continuous Clear Flag

The value of this parameter determines whiether the

camera will perform continuous clearing of the CCD

between exposures.

0 = ontinuous clearing disabled

! = continuous clearing enabled

31 ANTI-BLOOM Clock Recombination Anti-Blooming Flag

The value of this parameter will determine whether the

camera will perform clock recombination anti-blooming

during the exposures.

0 = anti-blooming disabled

1 = anti-blooming enabled

32 ARCH CCD architecture

The value of this parameter determines whether the camera will

perform a 'shft image to storage' operation before reading the

image off the CCD.

0 = full frame

1 = frame transfer

aisS7.for Thu, Sep 24, 1992 9:41 AM 21

33 SPEED Camera Readout Speed

The value of this parameter determines at what speed the

camera will readout the image data. The actual speed of

the two options will depend on camera hardware and software

configuration.

0 = slow

1 = fast

DECIMAL

64 TABLE PARgZ

(parameter name definitions

(we can access the variables either by index or name

DECLMAL

(parameters 0 -> 29 are

: CCD_SER 0 PARAM ;

: BIN_SER 1 PARAM ;

: PRE_SER 2 PARAM ;

: UNDER_SER 3 PARAM ;

: ORG SER 4 PARAM ;

: READ_SER 5 PARAM ;

: POST_SER 6 PARAM ;

: OVER_SER 7 PARAM ;

CCD PAR 8 PARAM ;

BIN_PAR 9 PARAM ;

ORG_PAR I0 PARAM ;

READ_PAR ii PARAM ;

POST_PAR 12 PARAM ;

OVERPAR 13 p.a_gAM ;

: PAR_DELAY 14 PARAM

shared with the ATC5 cameras)

total length of serial register, including extension

serial bir_ning factor

serial read origin, should include extension

serial read dimension

serial postscan, pixels to discard after the read

serial overscan

total length of parallel register

parallel binning factor

parallel read origin

parallel read dimension

parallel postscan, rows to discard after the read

parallel overscan

(parallel clock delay time

parameter locations 15 through 19 unused for now)

ODELAY 20 PARAM ; (time, in milliseconds, required for the shutter to open

CDELAY 21 PARAM ; (time, in milliseconds, required for the shutter to close

: EXP_TIME_LO 22 PARAM ; (exposure time as a double word for exposure and integrate

: EXP_TIME_HI 23 PARAM ;

: NUM_CLEARS 24 PARAM ; (number of clears to perform when clear is called

: NUM_IMAGES 25 PARAM ;

: IM DELAY LO 26 PARAM ; (delay between multiple image acquisitions, as a double word)

: IM_DELAY_HI 27 PARAM ;

(parameter locations 28 through 29 unused for now)

: CCLEAR 30 PARAM ; (continuous clear flag

: ANTI-BLOOM 31 PARAM ; (clock recombination anti-blooming flag

: ARCH 32 PARAM ;

: SPEED 33 PARAM ;

: SL_DELI 34 PARAM ;

: SL_DEL2 35 PARAM ;

(slow readout delay 1 from shift to surmning well)

(slow read delay 2 from sunrning well to adc start pulse }

params > 50 are specific to the camera this software is installed in

there are currently no ATC5 specific parameters)

AIS camera specific parameters)

ais57.for Thu, Sep 24, 1992 9:41 AM 22

• nste : serial direction control is disabled as the camera has been limited to only

-_= oc<< on either side

: SAM0 PDIR 51 PARAM ;

_,ul -_T;_ 53 PARAM ;

_-N- _ANT FORWARD

__N_ _._ REVERSE

_:=._o=: PA_RAMETERS FOR THE AISI CAMERA

parallel direction for CAM0 0 : forwards, 1 : backwards

parallel direction for CAM1 0 = forwards, 1 = backwards

ZS4,9 TCD_EER !

BiN_SER

15 PRESER

0 Uq_DER SER !

] SRG_SER !

204? ._READ_SER

IZ POST_S_ER !

30VER_SER

1024 CCD_PAR

i BINPAR

CRG_PAR

1024 READ_PAR !

0 POST_PAR [

0 OVERPAR

20 ODELAY !

!00 CDELAY

0 EXP_T IME_HI

200 EXP TIME LO

2 NUM CLEARS

I NI/M_IMAGES !

0 IM_DELAY_HI

50 iM_DELAY_LO

0 CCLEAR !

0 ,_TI-BLOOM

0 AR_{ !

0 SPEED

print a formatted list of current
: SHOW- PARAMS

CR

CCD_SER

BIN_SER

PRE_SER

UNDER SER

ORG_SER

READ_SER

POST SER

" OVER_SER

,_ik

" CCD_PAR = "

" BIN_PAR = "

" ORG_PAR =

" READ PAR = "

" POST_PAR =

" OVER_PAR = "

" PAR_DELAY = "

parameter set

= " CCD_SER @ 5 U.R CR

: " BIN SER @ 5 U.R CR

: " PRE_SER @ 5 U.R CR

= " UNDER SER @ 5 U.R CR

= ORG_SER @ 5 U.R CR

: " READ_SER @ 5 U.R CR

= POST_SER @ 5 U.R CR

: " OVER_SER @ 5 U.R CR

CCD_PAR @ 5 U.R CR

BIN_PAR @ 5 U.R CR

ORG_PAR @ 5 U.R CR

READ_PAR @ 5 U.R CR

POET_PAR @ 5 U. R CR

OVER_PAR @ 5 U.R CR

PAR_DELAY @ 5 U.R CR

" press any key to see next page of parameter list ..." BEGIN ?TERMINAL UNTIL CR

" ODELAY = " ODELAY @ 5 U.R CR

" CDELAY = " CDELAY @ 5 U.R CR

CR

" EXP_TIME HI = " EXP_TIME_HI @ 5 U.R CR

" EXP_TIME LO = " EXP TIME_LO @ 5 U.R CR

2R

aisS7.for Thu, Sep 24, 1992 9:41 AM 23

" NUM CLEARS : " N-CM_CLEARS @ 5 U.R CR

" NUM IMAGES : ")TCM iMAGES @ 5 U.R CR

CR

" IM DELAY_HI = " !M DELAY HI @ 5 U.R CR

" IM DELAY_LO = " IM DELAY_LO @ 5 U.R CR

CR

" CCLEAR : " CCLEAR @ 5 U.R CR

" ANTI-BLOOM : " ANTI-BLOOM @ 5 U.R CR

CR

" SL_DELI : SL DELl @ 5 U.R

" EL DEL2 : " EL DEL2 @ 5 U.R

." SLOW READ DELAY I " CR

." SLOW READ DELAY 2 " CR

ARCH @ IF " ARCH : FRAME TRANSFER" CR

ELSE " ARCH = FULL FRAME " CR

THEN

SPEED @ IF " SPEED : FAST" CR

ELSE " SPEED = SLOW" CR

THEN

" press any key to see next page of parameter list ..."

BEGIN ?TEPMINAL UNTIL CR

" GSP_FLAG :

" GSP_CAPWIN :

" GSP_CAP_X :

" GSP CAP Y :

." GSP DIS WIN =

" 40 PARAM @ 5 U.R CR

" 41 PARAM @ 5 U.R CR

" 42 PARAM @ 5 U.R CR

" 43 PARAM @ 5 U.R CR

" 44 PARAM @ 5 U.R CR

" press any key to see next page of parameter list ..."

BEGIN ?TERMINAL LqqTIL CR

" direction flags for CAMs 0 : forwards, 1 : backwards " CR

" CAM0_SDIR = " 50 PARAM @ 5 U.R CR

" CAM0_PDIR = " 51 PARAM @ 5 U.R CR

" CAMI_SDIR = " B2 PARAM @ 5 U.R CR

" C_MI_PDIR = " 53 PARAM @ 5 U.R CR

Prograrmmble Clock Voltages
...........................

storage locations for current clock rail settings

voltages are stored in the same order as they appear in the dsp's memory map

DECIMAL

(FIRST FOR CLOCK/ANALOG MODULE 0

24 CONSTANT NUM_VOLTS

NL__VOLTS TABLE CAMO VOLT

: CAM0_PAR_LO 0 CAM0_VOLT ;

: CAM0 PAR MID 1 CAM0 VOLT ;

: C._40 PAR HI 2 CAM0_VOLT ;

: C-_40_SER_LO 3 CAM0_VOLT ;

: CAM0 SER MID 4 CAM0_VOLT ;

: CAM0_SELHI 5 CAM0_VOLT ;

: C-kM0__TG_LO 6 CAM0_VOLT ;

: CAM0_TG_HI 7 CAMO_VOLT ;

: CAM0 _ LO 8 CAM0_VOLT ;

: CAM0 SW HI 9 CAM0_VOLT ;

: CAM0_SUB I0 C-_240 VOLT ;

: C-hM0__ST i! C._M0_VOLT ;

ais57.for Thu, Sep 24, 1992 9:41 AM 24

C2-I_0 RST LO 12 CAM0 VOLT ;

CAv;c RST HI 13 C_.M0 VOLT ;

7_MOZTRD 14 CAM0_VOLT ;

CAMOZJOD i-_ CAH0jgOLT ;

CAM0 X1 LO 16 C£-_M0_VOLT ;

CAM0_XI_Hi 17 CAM0_VOLT ;

CAM0 X2 LO !8 TAM0 VOLT ;

7AM0 X2 HI 19 ___/_0_VOLT ;

C_O X3 LO 20 CAM0_VOLT ;

C_,fO X3 HI 21 C_IM0_VOLT ;
C._M0 X4 LO 22 CAM0_VOLT ;

CAMO X4 HI 2__ JAM0_VOLT ;

.,,EN FOR r _ _v,Z':ALSG MODULE 1

".YOAVOLTS TABLE :gl{IVOLT

: 2AMI PAR LO $:A/{!_JOLT ;

: 22,'71 P,_R MID i 2AM! VOLT ;

: CAM1 P._R HI 2 TAM!_VOLT ;

: t._41 SER LO 5, L_MIj/OLT ;

: CAM! SER MID 4 2_.M!_VOLT ;

: 2_/{! SER HI :. C-AM!_VOLT ;

: t_Mi TG LO 6 CA/41 VOLT ;

: L£_41 TG HI 7 CAMI_VOLT ;

: C_MI SW LO 8 CAMI_VOLT ;

: C._MI _%4 HI 9 EA_MI_VOLT ;

: CAMI_SUB !0 CAHI_VOLT ;

: CAMI_LAST ii C2-_MI_VOLT ;

: CAMI_RST_LO 12 Cf--MI_VOLT ;

: CAM1 RST HI 12 CI_41_VOLT ;

: CAMI_VRD 14 C_M!_VOLT ;

: CAM1 VOD !5 CAMI_VOLT ;

: CAM1 X1 LO 16 CAMI_VOLT ;

: CAM1 X1 HI 17 C_<MI_VOLT ;

: CAM1 X2 LO 18 C;hMI_VOLT ;

: CAM1 X2 HI 19 CAMI_VOLT ;

: C_IMI X3 LO 20 CAMI_VOLT ;

: CAM1 X3 HI _ CAMI_VOLT ;

: CAM1 X4 LO _ C_MI_VOLT ;

: CAM1 X4 HI 23 CAMI_VOLT ;

SHOW-VOLTS

: SHOW-VOLTS (

CR

CAM0_PAR_LO C@

CAM0_PAR_HI D C@

CAM0_PAR_HI C@

CAM0 SER LO C@

CAM0_SER MID C@

CAM0 SER HI C@

CAM0 TG LO C@

CAM0 TG HI C@

CAM0 SW LO C@

CAM0 SW HI C@

CAM0_SUB C@

CAM0_LhST C@

CAM0 RST LO C@

CAM0 RST_HI C@

CAM0 VOD C@

CAMO_VRD C@

CAM0 X1 LO C@

CAM0 X1 HI C@

CAM0 X2 LO C@

CAM0_X2_HI C@

CAM0 X3 LO C@

CAM0 X3 HI C@

CAM0 X4 LO C@

CAM0 X4 HI C@

CR

CAM1 PAR LO

SEND FORMATTED TABLE OF CLOCK VOLTAGES TO HOST COMPUTER

CAM0 PAR LO

CAM0_PAR_MI D

CAM0_PAR_HI

CAM0_SER_LO

CAM0_SER MID

CAM0 SER HI

CAM0 TG LO

CAM0_TG HI

CAM0_SW LO

CAMO_SW_HI

CAM0_SUB

." CAMO_LAST

." CAM0_RST_LO

." CAM0_RST_HI

." CAM0_VOD

." CAM0_VRD

." CAM0 XI_LO

." CAM0_XI_HI

" CAM0 X2 LO

" CAM0 X2 HI

" CAM0 X3 LO

" CAM0 X3 HI

" CAM0 X4 LO

" CAM0_X4 HI

: 2U.R

= 2U.R

= 2U.R

= 2U.R

= 2U.R

: 2U.R

: 2U.R

= 2U.R

= 2 U.R

= 2 U.R

= 2 U.R

= 2U.R

= 2 U.R

= 2 U.R

= 2 U.R

= 2U.R

= 2 U.R

= 2U.R

= 2 U.R

= 2U.R

= 2 U.R

= 2U.R

= 2 U.R

= 2 U.R

CR

CR

CR

CR

CR

CR

CR

CR

CR

CR

CR

CR

CR

CR

CR

CR

CR

CR

CR

CR

CR

CR

CR

CR

C@ " CAMI_PAR_LO = " 2 U.R CR

ais57.for Thu, Sep 24, 1992 9:41 AM 2S

CAM1 PAR MID C@

CAM1 PAR HI C@

CAM1 SER_LO C@

CAM1 SER MID C@

CAM1 SER HI C@

CAM1 TG LO C@

CAM1 TG HI C@

CAM1 SW LO C@

CAM1 SW HI C@

CAM1 SUB C@

CAM1 LAST C@

CAM1 RST LO C@

CAM1 RST HI C@

CAMI_VOD C@

CAMI_VRD C@

CAMI XI LO C@

CAMI XI HI C@

CAM1 X2 LO C@

CAMI X2 HI C@

CAMI X3 LO C@

CAM1 X3 HI C@

CAMI X4 LO C@

CAM1 X4 HI C@

" CAMI_PAR_MID

" CAMI_PAR HI

" CAHI_SER_LO

" CAMI_SER MID

" CAM1 SER_HI

" CAM1 TG LO

" CAM1 TG HI

" CAMI SW LO

" CAM1 SW HI

" CAMI_SUB

" CAMI_LAST

" CAMI_RST LO

CAMI_RST_HI

CAMI_VOD

CAMI_VRD
CAM1 X1 LO

CAM1 X1 HI

CAMI _%2 LO

CAMI 142 HI

CAMI X3 LO

CAM1 X3 HI

CAMI X4 LO

CAM1 X4 HI

= 2

= 2

= 2

= 2

= 2

: 2

= 2

= 2

: 2

= 2

: 2

= 2

= 2

= 2

: 2

= 2

: 2

= 2

= 2

= 2

= 2

= 2

= 2

U. R CR

U.R CR

U.R CR

U.R CR

U. R CR

U. R CR

U. R CR

U. R CR

U.R CR

U. R CR

U. R CR

U.R CR

U.R CR

U. R CR

U.R CR

U.R CR

U.R CR

U. R CR

U. R CR

U. R CR

U.R CR

U. R CR

U.R CR

CCD Clock Timing

{ there's supposed to he some discussion of the concept here. }

State Tables

the camera timing is determined by the variables stored in the following state

tables, two tables are provided for each sequence, these include the actual

states; i.e the values to be written into the latches on the clock cards; and

a set of "'waits" that dete_mine how long the sequencer should pause between

states.

four sequences are stored : PARALLEL CLOCK SEQUENCE

SERIAL CLOCK SEQUENCE

'ANALOG PROCESSING CONTROL SEQUENCE

CLOCK RECOMBINATION ANTI BLOOMING SEQUENCE

NOTE : there is no delay on the serial clocks

array length is arbitrarily limited to 32 entries of 16 bits each

with the statement directly below defining TABLE_LEN

DECIMAL

32 CONSTANT TABLE LEN

(there are two parallel clock state tables. One for one half of the chip

VARIABLE N_PAR_STATES (* CAM0 N PAR_STATES, NUMBER OF PAR STATES IN USE

TABLE_LEN TABLE CAM0 PAR STATE

TABLE_LEN TABLE CAM1 PAR STATE

TABLE_LEN TABLE PAR_DELAY

: SHOW-PAR_STATES

HEX CR

N PAR STATES @ 0

DO I DUP CAM0_PAR_STATE @ S_4AP

" CA}40 PAR STATE" . ." = " 4 .R CR

LOOP CR

N PAR STATES @ 0

ais57.for Thu, Sep 24, 11)1)2 9:41 AM 26

DO Z DUP CA_41 PAR STATE @ SWAP

" C_-MI_PAR_STATE" . ." = " 4 .R CR

LCOP CR

N_P,_-R STATES @ 0

DO i DUP PAR DELAY @ SWAP

" PAR_DELAY" . ." = " 4 .R CR

LOOP ;

SET-PAR DELAYS (W -) { sets all parallel delayss to the value W)

_ _ _m_c _ 0 DO DUP I PAR_DELAY ' LOOP ;

VARIABLE N SER STATES (* C_M0 N SER STATES, NTIM_ER OF SERIAL STATES IN USE

T_SLZ_LEN T_LE SER_STATE

: SHOW-SER_STATES

HEY,,CR

N SER STATES @ 0

DO _ DUP SER_STATE 9 SWAP

" SER _<'TATE" ." = " 4 .R CR

LOOP ;

VARIABLE N ANA STATES

TABLE_LEN TABLE ANA STATE

TABLE_LEN TABLE _iqA_DELAY

(* N PAR STATES, NU}4BER OF ANALOG STATES IN USE

SHOW-ANA STATES

HEX CR

N--_NA_STATES @ 0

DO i DUP ANA STATE @ SWAP

" ANA_STATE" . ." = " 4 .R

Z DUP AHA DELAY @ SWAP

• " ANA DELAY" ." = " 4 .R CR

LOOP ;

(AB STATES are used in clock recombination anti-blooming. They are values to

{ be written to the parallel clock control latch during such operation•

(AB DELAYS represent the amount of time to pause between each state.

VARIABLE NANTI-BLOOMSTATES (* NANTI-BLOOMSTATES : THE NUMBER OF ANTI-BLOOM STATES IN USE

16 TABLE ,a/qTI-BLOOM_STATE

16 TABLE ANTI-BLOOM_WAIT

SHOW-ANTI -BLOOM STATES

HEX CR

N ANTI-BLOOM STATES @ 0

DO i DUP ANTI-BLOOM STATE @ _WAP

" ANTI -BLOOM_STATE" . .'....- 4 .R CR

i DUP ANTI-BLOOM_WAIT @ SWAP

." ANT!-BLOOM'WAIT " ." : " 4 .R CR

LOOP ;

State Definitions

constants for the parallel timing states are defined below

00 CONSTANT PI_LO

01 CONSTANT PI_MID

02 CONSTANT PI_HI

00 CONSTANT P2 LO

C4 CONST_/qT P2_ZZD

08 CONSTANT P2_HI

00 CONSTANT P3 LO

ais57.for Thu, Sep 24, 1992 9:41 AM 27

i0 CONSTANT P3jMID

20 CONSTANT P3_HI

00 CONSTANT P4 LO

40 CONST_qT P4_MID

80 CONSTANT P4ZHI

(constants for transfer gate)

0 CONSTANT TG_LO

i00 CONSTANT TG HI

(constants for the serial timing states are defined below

00 ,CONSTANT SI_LO

01 CONSTANT SI_MID

02 CONSTANT SI_HI

00 CONSTANT $2 LO

04 CONSTANT $2 MID

08 CONSTANT S2_HI

00 CONSTANT S3_LO

i0 CONSTANT S3_MID

20 CONSTANT S3_HI

00 CONSTANT _4 LO

40 CONSTANT S4_MID

80 CONSTANT S4_HI

(.constants for the analog timing states are defined below

HE/4

1 CONSTANT RIN

0 CONSTANT !RIN

integrator reset

2 CONSTANT DCR

0 CONSTANT !DCR

D.C. restore

4 CONSTANT SA2

0 CONSTANT !SA2

sample period 2

8 CONSTANT SAI

0 CONSTANT !SAI

sample period 1

i0 CONSTANT CTC

0 CONSTANT !CTC

command to convert

20 CONSTANT SEN

0 CONSTANT !SEN

send data trigger

40 CONSTANT 16B

0 CONSTANT _I6B

use slow speed 16 bit converter)

AIS CAMERA CONTROL FUNCTIONS

the 68HCII passes con_nands to the DSP through the DSP's cormmand vector

register, CVR, the value written there determines which of the host colmnands

will be executed. There are a total of 28 cor_nand vectors which may be passed

the first 26 correspond to the DSP's normal exception processing including

external interrupts, software interrupts,and other interrupts associated with

the dsp's various peripherals. Through the CVR, we may force recognition of

any of these exceptions. Some of those are implented in ths code.

in addition, there are 12 cormmnd vectors reserved for use by the host. It is

through these conm_and vectors that we normally force ecution of dsp routines.

the routines which we may cause the dsp to execute include the following:

als57.for Thu, Sop 24, 1992 9:41 AM 28

FU_CTI£_;

say o k

cam-write

camread

volt_test

cam ctl!

init-volzs

! init-states

init-fo_-ra<

read

clear

pix-bin

row-bin

{ pix-discard

row-discard

' pix-read

' row-read

{ shift_is

i anni-bi_cm

DESCRIPTION

respond to 6811 as test
write to camera addresss

read from camera address

test clock voltage dac's

write to cam control latch

set cam clock voltages

set camera readout timing

set readout parameters

read the cod

clear the cod

shift pixels to summing well

shift rows into ser reg

clear pixels in ser reg

clear rows

read pixels

read rows

PARAMETERS

none

addr data 16 bit

24 8 bit

xx 16 bit

none

1 8 bit

1 16 bit

1 16 bit

1 16 bit

1 16 bit

1 16 bit

1 16 bit

voltage settings

format parameters

number of clears

of pixels

of rows

of pixels

of pixels

of rows

of rows

shift image to storage (frame transfer only)

perform clock recombination anti-blooming

(VALUES TO W_!TE TO THE CVR TO INITIATE THE DSP FUNCTIONS

06 CONSTANT CMI] SAY OK

07 CONSTANT _MDCAM_WRITE

08 CONSTANT CMD CAM READ

(THE FOLLOWING four ARE USED BY AIS CAMERAS ONLY)

09 CONSTANT CMD_VOLT_TEST

0A CONSTANT _ CAM CTL!

0B CONSTANT CMDINIT_VOLTS

0C CONSTANT CMD_INITSTATES

(12 CONSTANT _'_MD_SHADE USED BY ATC5 ONLY

13 CONSTANT CMD_FORMAT

14 CONSTANT CMD_READ

15 CONSTANT _--"MD_CLEAR

16 CONSTANT CMD_PIX_BIN

17 CONSTANT CMD ROW BIN

18 CONSTANT CMD PIX DISCARD

19 CONSTANT CMD ROW DISCARD

IA CONSTANT CMD PIX READ

IB CONSTANT CMD ROW READ

ID CONSTANT CMD_SHIFT_IS

IE CONSTANT CMDANTI_BLOOM

there are several commands which will cause the DSP to perform

some operation repetitivly until told by the 68hci! to stop.

Host Flag ! in the DSP registers is used as a boolean by the DSP

after the completion of each cycle to determine if it should

continue. Two functions currently use this flag : continuous

clearing of the CCD and clock recombination anti-blooming.

Others could be so configured.

The following word is used to stop any of these operations.

: CEASE-AND-DESIST F-HFI ;

{ The following word is used to encourage the DSP to continue

- PLEASE-CONTINUE T-HFI ;

VARIABLE DSP_REV (STORAGE FOR DSP REVISION NUMBER)

H/C{

: DSP-OK? CEASE-AND-DESIST

SAY OK HV!

ais57.for Thu, Sep 24, 1992 9:41 AM 29

DSPI6@ 4F :

IF

DSPI6@ 4B : IF DSPI6@ DSP_REV ! TRUE DSP OK !

ELSE FALSE DSP OK !

THEN

ELSE FALSE DSP OK !

THEq

DSPOK @ IF

ELSE REPORT-DSP-ERROR

THEN ;

(**

(CAM-READ and CAM-WRITE

(

(Low-level con_nands for reading and writing DSP adresses from the FORTH

(program.

{

0 CONSTANT X_kDDR

1 CONSTANT Y_%DDR

(CAM-READ read a value from a DSP address)

: C._4-RFAD (space address - datum)

DSP-OK? DSP OK @

IF DSP-WAIT CEASE-AND-DESIST CMD_CAM_READ HV!

DSPI6! (pass the address)

DSPI6! (pass the address space :

DSPI6@ (get the datum)

DSP__OK @ IF DSP-WAIT

ELSE ." ERROR : DSP error condition persists " CR

THEN

THEN ;

0 :X i :Y)

(CAM-WRITE write a value to a DSP address)

: C_M-WRITE (datum space address -)

DSP-OK? DSP_OK @

IF DSP-WAIT CEASE-AND-DESIST CMD CAM WRITE HV!

DSPI6! (pass the address)

DSP!6! (pass the address space :

DSPI6! (pass the data)

DSP_OK @ IF DSP-WAIT

ELSE ." ERROR : DSP error condition persists " CR
THEN

THEN ;

0 = x 1 =y)

CCD control registers
.....................

The CCD is controlled by the DSP through the clock card. The clcok

card is a memory mapped device. By writing to the various locations
on the clock card the DSP controls the entire CCD reaout. Several of

the most important locations on the clock card are defined below as

the addresses at which the DSP accesses them.

Each is desribed in some small detail below, alongwith thire definitions.

AIS AND AIS2 ONLY

HEX

FF00 CONSTANT ID_LATCH

FF20 CONSTANT SER_LATCH

FF24 CONSTANT PAR_LATCH

FF28 CONSTANT OUT_LATCH

FF2C CONSTANT ANA_LATCH

FF30 CONSTANT CTL_LATCH

(LOCATION, IN ALL CAMS, OF CAM ID LATCH

(LOCATION OF CAM LATCH FOR SERIAL CLOCK CONTROL

(LOCATION OF CAM LATCH FOR PARALLEL CLOCK CONTROL

(LOCATION OF CAM LATCH FOR RESET, SUMMING WELL,

(AND TRANSFER GATE CONTROL

(LOCATION OF CAM LATCH FOR ANALOG PROCESSING CONTROL

(LOCATION OF CAM LATCH FOR CAM SETUP

aisS7.for Thu, $ep 24, 1992 9:41 AM 30

Clock/Analog Module ID registers
................................

CAM-ID!, CAM-ENABLE, CAM-DISABLE, CAM-ENABLE-ALL

C2_M-DISABLE-ALL, CAM0-ONLY, CAMI-ONLY

The various clock/analog modules in the AIS systemmay be independently

enabled. _n eight bit latch simultaneously accessed on each clock board

determines which cam's will respond to subsequent con_nands. Jumpers on the

board determine which bit <hat board will monitor. If that bit is written

as a zero, zhen t_mt will respond to all con_rmnds issued until that bit is

written _s a one. More than one board may monitor each bit, effectively

giving them the same I.D. boards with different I.D.'s may be simultaneously

accessed by setting each of their I.D. bi_s low.

CAM_ID is a variable which stores the most recently issued cam i.d. byte

the value stored here has a bit set to one for every cam enabled

2his is inverted before being written to the i.d. latch

VARIP_LE CAM_ i D

(CAM-ID_

: CAM-ID!

con_Tands the DSP to write the CAM-ID to the ID latch in the CAM'S

C_D_CAM_RITE HV_

ID LATCH DSPI6!

Y ADDR DSPI6_

CAM_ID @

FFFF XOR

DSPI6! ;

01 CONSTANT CAM0

02 CONSTANT CAM1

(ASK THE DSP TO WRITE TO A MEMORY LOCATION

(MAKE IT THE C_M iD LATCH

(WHICH IS IN Y SPACE

(FETCH THE CURRENT CAM ID

I INVERT ALL THE BITE

(WRITE IT

CAMS 2 - 7 APE NOT USED IN _HIS CAMERA SYSTEM

04 CONSTANT CAM2

08 CONSTANT CAM3

i0 CONSTANT CAM4

20 CONSTANT ClhM5

40 CONSTANT CAM6

80 CONSTANT CAM7

FF CONSTANT ALL_CAMS

(CAM-_qqABLE expects one of the constants CAM0 - CAM7 on the stack

(or's this value with the current CAM_ID

(snores this and calls CAM-ID! to write it to the latch

: CAM-ENABLE

CAM ID @ OR

CAM ID ! CAM-ID! ;

(CAM-DISABLE expects one of the constants CAM0 - CAM7 on the stack

(inverts this and ands it with current CAM_ID

(stores this and calls CAM-ID! to write it to the latch

: CAM-DISABLE

FFFF XOR

CAM_ID @ AND

CAM ID ! CAM-ID! ;

(The following words anable and disable ALL the CAMs in the system.

: CAM-ENABLE-ALL FF CAM_ID ! CAM-ID! ;

: CAM-DISABLE-ALL 00 CAM ID ! CAM-ID[;

{ The following words are used to assure that only ONE CAM is enabled.

: C_M0-ONLY CAM-DISABLE-ALL CAM0 CAM-ENABLE ;

ailS7.for Thu, Sep 24, 1992 9:41 AM 31

: CAMI-ONLY CAM-DISABLE-ALL CAM1 CAM-m--_ABLE ;

CAM CONTROL REGISTERS

EACH CAM CONTAINS AN 8 BIT CONTROL REGISTER

BIT 0 CLOCK ENABLE CLOCKS THROUGH TO CCD ACTIVE HIGH

BIT 1 ANALOG CONTROL ENABLE

BIT 2 PARALLEL CLOCK ENABLE

BIT 3 SERIAL CLOCK ENABLE

BIT 4 OTHER CLOCKS ANABLE

BIT 5 NOT USED

BIT 6 NOT USED

BIT 7 NOT USED

a storage location for current value in control latch for each CAM

VARIABLE CTL CAM0

VARIABLE CTL_CAMI

VARIABLE CTL CAM2

VARIABLE CTL_CAM3

VARIABLE CTL CAM4

VARIABLE CTL CAM5

VARIABLE CTL_CAM6

VARIABLE CTL_CAM7

(CAM-CTL

(

: CAM-CTL !

stores a value in the camera control latch of the

currently selected CAM. expects the value on the stack

DSP-WAIT

CLR-TXH-TXM

CMD_CAM_CTL! HV! (call function

DSPI6! (pass data

DSP-WAIT ;

ENABLE-CCD-CLOCKS and DISABLE-CCD-CLOCKS

...

These words are used to open and close the switches which allow the

CCD clocks and voltages to be connected to the buffers or wires ,which

connect them to the CCD. When the switches are open, pull down resistors

pull the potentials to near 0 volts.

the following word is used to enable the clock signals in each CAM

it expects the CAM ID { CAM0 - CAM7] to be on the stack

CLKS-EN

CAM ID @ TEMPO

DUP CAM0 =

IF

C!_40-ONLY CTL_CAM0 @ T-0 DUP CTL_CAM0 !

ELSE

DUP CAM1 =

IF

CAMI-ONLY CTL_CAMI @ T-0 DUP CTL_CAMI !

THEN

THEN

C,_M-CTL!

DROP TEMPO @ CAM_ID ! CAM-ID! ;

(the following word is used to disable the clock signals in each CAM

(it expects the CAM ID { CAM0 - CAM7 } to be on the stack

: CLKS-DIS

CAM_ID @ TEMPO !

DUP CAM0 :

IF

CAM0-ONLY CTL_CAM0 @ F-0 DUP CTL CAM0 !

ELSE

aisS7.for Thu, Sep 24, 1992 9:41 AM 32

DUP C]-_I :

Lf

CAMI-ONLY CTL_C_:_41 @ F-0 DUP CTL_CAMI

THEN

TH_--N

C._M-CTL

DROP T_L-MP0 @ C_M ID ! CAM-ID! ;

! -he following words are used to enable and disable the different latches

i in each cam. they expect the cam id { cam0 - cam7 } to be on the stack.

: A_[ALOG- EN

CAM_ID @ TEMPO

DUP CAM0 =

IF

CAM0-ONLY CTL_C_M0 @ F-I DUP CTL_CAM0 !

ELSE

DUP C;_MI =

IF

CAMI-ONLY CTL_CAMI @ F-I DUP CTL_CAMI

THEN

THEN

CAM-CTL

DROP TEMPO @ CAM_ID ! CAM-ID! ;

_ALOG -D I S

CAM_ID 9 TEMPO

DUP CAM0 =

IF

CAM0-ONLY CTL CAM0 @ T-I DUP CTL CAM0 !

ELSE

DUP CAM! =

IF

CAMI-ONLY CTL_CAMI @ T-I DUP CTL_CAMI

THEN

THEN

CAM-CTL !

DROP TEMPO @ CAM_ID ! CAM-ID! ;

ENABLE-PARALLELS and DISABLE-PARALLELS

......................................

These words are used to bit enable and disable the output of the

parallel clock control latch.

These words also set the Frame ENable and Line ENable signals to

their active low states allowing interface boards that monitor

these signals to collect the data while the parallels are not running.

This low level mode of operation is useful for test purposes.

: PCLKS- E/q

CAM ID @ TEMPO

DUP CAM0 =

IF

C.KM0-ONLY CTL CAM0 @ F-2 DUP CTL_CAM0 !

ELSE

DUP CAM1 =

IF

C__MI-ONLY CTL_CAMI @ F-2 DUP CTL CAM1 !

THEN

THEN

CAM-CTL

DROP TEMPO @ CAM_ID [CAM-ID! ;

: PCLKS-DIS

CAM_ID @ TEMPO

DUP CAM0 :

IF

CAM0-ONLY CTL_CAM0 @ T-2 DUP CTL_CAM0 !

ELSE

ais57.for Thu, Sep 24, 1992 9:41 AM 33

DUP CAM1 :

IF

CAMI-ONLY CTL CAM1 9 T-2 DUP CTL_CAMI !

THEN

THEN

CAM-CTL !

DROP TEMPO @ CAM_ID ! CAM-ID! ;

ENABLE-SERIALS and DISABLE-SERIALS

..................................

These words are used to bit enable and disable the output of the

SERIAL clock control latch.

SCLKS-EN

CAM ID @ TEMPO

DUP CAM0 =

IF

CAM0-ONLY CTL CAM0 @ F-3 DUP CTL_CAM0 !

ELSE

DUP CAM1 =

IF

CAMI-ONLY CTL_CAMI @ F-3 DUP CTL_CAMI

THEN

THEN

CAM-CTL!

DROP TEMPO @ CAM_ID ! CAM-ID! ;

SCLKS-DIS

CAM_ID @ TEMPO

DUP CAM0 =

IF

CAM0-ONLY CTL CAM0 @ T-3 DUP CTL_CAM0 !

ELSE

DUP CAM1 =

IF

CAMI-ONLY CTL_CAMI @ T-3 DUP CTL CAM1

THEN

THEN

CAM-CTL

DROP TEMPO @ CAM_ID ! C._M-ID! ;

OCLKS-EN

CAM_ID @ TEMPO !

DUP CAM0 :

IF

CAM0-ONLY CTL_CAM0 @ F-4 DUP CTL_CAM0 !

ELSE

DUP CAM1 =

IF

CAMI-ONLY CTL_CAMI @ F-4 DUP CTL_CAMI

THEN

THEN

CAM-CTL !

DROP TEMPO @ CAM_iD ! CAM-ID! ;

OCLKS-DIS

CAM_ID @ TEMPO

DUP CAM0 =

IF

CAM0-ONLY CTL CAM0 @ T-4 DUP CTL_CAM0 !

ELSE

DUP CAM1 =

IF

CAMI-ONLY CTL_CAMI @ T-4 DUP CTL_CAMI !

THEN

THEN

CAM-CTL

DROP TEMPO @ CAM_ID ! CAM-ID! ;

aisS7.for Thu, Sep 24, 1992 9:41 AM 34

ALL-CLKS-EN < enable all clock signals on currently selected C_/M)

Ol CAM-CTL! ;

ALL-CLKS-DIS (disable all clock signals on currently selected CAM)

FE C_M-CTL! ;

FORMAT_, FORMAT?

These two words may be used to set and examine the format parameters in

a fairly low-level ;way. in each case the fox,nat parameters are passed as a

simple ck_racter stream. The order of the parameters is easy to remember.

FORMAT sees =he format parameters to the values found on the stack)

FO_½hT SETS THE FORMAT PARAMETERS TO THE VALUES FOUND ON _HE STACK)

DECIMAL

: FourS.T!

DEPTH 14 <

IF

CR ." ERROR : INSUFFICIENT STACK ENTRIES " CR

ELSE

CCD_SER BIN SER PRE_SER UNDER_SER !

READ_SER POST_SER OVF/R_SER

CCD_PAR BINPAR ORG_PAR READ_PAR !

THEN ;

ORGSER

POST_PAR ! OVER_PAR !

(FORMAT? SIMPLY ECHOES q_HE FORMAT PARAMTER VALUES IN ORDER)

: FORMAT?

CR

CCD SER @ U. BIN SER @ U. PRE SER @ U. UZ[DER_SER @ U.

ORG SER @ U. READ SER @ U. POST SER @ U. OVER_SER @ U.

CCD_PAR @ U. BIN_P_R @ U.

ORG_PAR @ U. READ P;<R @ U. POET_PAR @ U. OVER_PAR

ARCH @ U.

CR ;

@ U. PAR_DELAY @ U.

Camera Initialization

.....................

INIT-DSP, INIT-VOLTS, INIT-STATES, INIT-FORMT, INIT-ALL

A variety of initialization routines are required to get the camera hardware

ready to acquire image data. All of them are executed by calling one routine

'INIT' defined near the end of this document. The INIT routine performs a

number of other tasks as well. These routines are used when it is necesary

to reinitialize some part of the hardware due to a configuration change. Much

camera configuration information is not valid until initialized. Clock card

voltages, for instance, are not set to the values stored in the VOLT table until

the INIT-VOLTS function is performed. Similiarly, the readout format parameters

due not take effect until the INIT-FORMAT function is called, and the timing

information stored in the various timing tables is not used until INIT-STATES is

called. Nothing can be accomplished at all if the DSP is not operating. The

INIT-DSP function is provided for the purpose of initializing the DSP program.

This is useful in development work where new DSP code has been downloaded.

The INIT-ALL function is a convenient way to just re-initialize everything

having to do with the DSP sequencer.

_X

a|sS7.for Thu, Sep 24, 1992 9:41 AM 35

: INIT-DSP

DSP-BOOT

ICR C@ 0 :

ISR C@ 6 = AND

CVR C@ 12 : AND

IF (if boot was successful ...

DSP-DUMP (... dump code to DSP.

DSP-OK? (... check DSP status

ELSE

FALSE DSP OK !

CR " ERROR : DSP bootstrap failed

THEN ;

" CR

SETS THE CLOCK BOARD VOLTAGES)

INIT-VOLTS _ -)

DSP-OK? DSP OK @

IF CLR-TXH-TXM

C._M0 -ONLY

CMD INIT VOLTS HV!

hLL_4_VOLTS 0 DO I CAM0_VOLT C@ DSPS! LOOP

" CAM0 voltages initialized " CR

DSP-OK? DSP_OK @

IF C_/ZI -ONLY

CMD INIT_VOLTS HV !

NL_M_VOLTS 0 DO I CAMI_VOLT C@ DSPS! LOOP

" CAM1 voltages initialized " CR

DSP-WAIT

ELSE ." ERROR : INIT-VOLTS terminated, DSP error " CR

THEN

ELSE ." ERROR : INIT-VOLTS terminated, DSP error " CR

THEN ,

(INIT-STATES DOWNLOADS THE CURRENT SET OF PAR_STATE, SER_STATE,

(AND ANA_STATE VALUES TO THE DSP

• INIT-STATES (-)

DSP-OK? DSP_OK @

IF CMD_INIT_STATES HV!

CLR-TXH-TXM

N_PAR STATES @ DUP DSPI6! 0 DO I CA}40 PAR STATE @ DSPI6! LOOP

N P_R_STATES @ 0 DO I C_-/MI_PAR_STATE @ DSPI6! LOOP

N_PAR_STATES @ 0 DO I PAR DELAY @ DSPI6! LOOP

N__ER_STATES @ DUP DSPI6! 0 DO I SER 9TATE @ DSPI6! LOOP
N_ANA_STATES @ DUP DSPI6! 0 DO I ANA STATE @ DSPI6! I ANA_DELAY @ DSPI6! LOOP

N A_NTI-BLOOM_STATES @ DUP DSPI6!

0 DO I ANTI-BLOOM_STATE @ DSPI6! I ANTI-BLOOM_WAIT @ DSPI6! LOOP

DSP-WAIT

ELSE ." ERROR : INIT-STATES terminated, DSP error " CR

THEN ;

INIT-FORMAT

DSP_OK @ 0=

IF CR ." DSP ERROR : INIT-FORMAT aborted " CR

ELSE

DSP-WAIT

CLR-TXH-TS_

CEASE-AND-DESIST

CMD_FORMAT HV_

CCD_SER @ DSPI6

ORG_SER @ DSPI6

CCD_PAR @ DSPI6

POST PAR @ DSPI6

CAM0 PDIR @ DSPI6

DSP-WAIT

THEN ;

BIN_SER @ DSPI6

READ_SER @ DSPI6

BIN PAR @ DSPI6

OVER PAR @ DSPI6

CAM1 PDIR @ DSPI6

PRE_SER @ DSPI6! UNDER SER @ DSPI6!

POST_SER @ DSPI6! OVER_SER @ DSPI6!

ORG_PAR @ DSPI6! REId3_PAR @ DSPI6!

ais$7.for Thu, Sop 24, 1992 9:41 AM 36

i:[iT!:I_LIZE E_TERYTHI NG

INIT-_LL

INIT-DSP

INIT-VOLTS

INIT- STATES

INIT-FORMAT

(***

{ Camera Speed

ITIM]E!, 40KHZ, 35KHZ, 30KHZ, 25 KHZ, 20KHZ, 15KHZ, !0KHZ

(

The AISI P_F__OUT SPEEDIow speed is adjustable from approx 40kHz downward.

(The exact speed depends on some timing variables, most ir_portantly the integration

time of the dual slope integrator. The SPEED may be adjusted over a much wide

(range and. As the ANALOG TO DIGITAL convertors architecture is that of a dual

i slope integrator, the gain of thr system is directly elected by the integration

i time. The integration time is determined by the values of ANA DELAYs 7 and 9.

! Several words are provided here 5o set the cameras slow readout rate to convenient

, values.

DECIM_kL

The following word sets the integration time for the slow speed analog processor.

it expects a 16 bit ntumber on the stack with a value ranging from _ -> 65535

_.___ value is used by the DSP as a coum_ter for 5he integration delay. The DSP

delays I00 ns for every unit in the integration time. Integrations may therefore

vary/ from lOOns to 6.5535 ms. In practice, there is approx 350 ns overhead in the

delay time and lOOns integration times are not possible. Additionally, if the

time is set too short, the converter will not have finished converting the previous

pixel when the new conrnand to convert comes along. Integration times as short as

1 us should work fine. Extremely long integrations will saturate the converter.

ITIME_ (W -) (expects the desired integration time on the stack)

DUP 7 SLOW DELAY !

9 SLOWDELAY

INIT-STATES ;

SPEED! is used to set the slow speed to a particular value. It expects the

new value for the integration time on the stack, it is used primarily as a

convenience for the definition of the words that follow.

SPEED_ (W-)

1 0 ANA DELAY

i 1 ANA DELAY

i 2 ANA_DELAY

i 3 ANA_DELAY !

1 4 ANA DELAY

12 5 ANA DELAY

I 6 ANA DELAY J

! 8 ,_NA_DELAY

! i 0 _]qA_DELAY !

i i I ANA DELAY

i ! 2 _]qA DELAY

50 13 _NA_DELAY !

DUP

(STACK) 7 ANA_DELAY !

(STACK) 9 ANA_DELAY !

±NI_-_-S ;

(The following words set the camera readout speed to some convenient values.

DECIMAL

: 40KHZ 38 SPEED! ;

: 35KHZ 56 SPEED! ;

: 30KHZ 80 SPEED! ;

: 20KHZ 163 SPEED! ;

ais57.for Thu, Sop 24, 1992 9:41 AM 37

: 15KHZ 245 SPEED! ;

: 10KHZ 411 SPEED! ;

: 5KHZ 910 SPEED! ;

. **)

WORDS FOR SHUTTER CONTROL

The following words are used for shutter control in AISI cameras

OPEN1 PORTA C@ T-_ PORTA C! ;

OPEN2 PORTA C@ T-6 PORTA C! ;

CLOSE!

CLOSE2

O PEN

CLOSE

PORTA C@ F-5 PORTA C! ;

PORTA C@ F-6 PORTA C! ;

OPENI OPEN2

ODELAY @ 0 MS-WAIT ;

CLOSEI CLOSE2

CDELAY @ 0 MS-WAIT ;

The following words are used for shutter control

in ATC5 and AIS2 cameras.

: OPEN PORTA C@ T-6 PORTA C! ODELAY @ 0 MS-WAIT ;

: CLOSE PORTA C@ F-6 PORTA C! CDELAY @ 0 MS-WAIT ;

System conmar_ds

Continuous Clearing of the CCD

..............................

START-CISC, STOP-CISC, CISC?, CISC-ON, and CISC-OFF

This set of words is used in conjunction with continuous clearing of the CCD

CCD between readouts. It is often desirable to continuously clear charge off

the CCD between image acquisitions. If there is no shutter in the system or if

the temperature of the CCD is fairly high this is very desirable. In a cryogenic

camera, this is not as important as the dark current is typicaly very low.

The 'CISC' terminology comes from the Photometrics CC200 where it stood for

'Clear Image and Storage Continuously'.

Continuous clearing of the camera is controlled by the DSP. If it is in its idle

state waiting for a host conmand and it detects Host Flag 0 in the Host Interface

as a 'I', then the DSP clears a row off the CCD. The flag is used in a reverse

logical sense, i.e. a '0' enables CISC and a 'I' disables it.

The 68HCII controls this feature simply by setting and clearing this flag at

any time. A parameter is maintained which may be polled at any time to determine

if it should do so.

: START-CISC F-HF0 ;

: STOP-CISC T-HF0 ;

ai$57.for Thu, Sep 24, 1992 9:41 AM 38

(the following word checks the parameter and either enables or disables CiSC

:CISC? CCLLkR 9 IF START-CISC

ELSE STOP-CISC

' the following words both set the flag and the parameter)

- C!SC-CN TRUE CCLF.Z3 ! START-CISC ;

: CISC-OFF FALSE CCLEA.R ! STOP-CISC ;

STA.RT-CRAB, STOP-CRAB, CRAB?, CRAB-ON, and CRAB-OFF

This set of words is used in conjunction with continuous clearing of the CCD

CCD between readouts. It is often desirable to continuously clear charge off

the CCD between image acquisitions. If there is no shutter in the system or if

the temperaEure of the CCD is fairly high this is very desirable. In a cryogenic

camera, this is not as important as the dark current is typicaly very low.

Clock recombination anti-blooming is controlled by the DSP. It may be told to

begin the process t>_cugh a Host Cor_nand at any time that it is not executing

any other host con_nand, it will continue util the 68HCII tells it o5 stop

by clearing HFI. (see CFASE-AND-DESIST above}

The 68HCII will call this function during exposures if the ANTI-BLOOM

parameter is set to true.

START - C RAB C_I%SE -__- DES IST

DSP-WAIT

CMD ANTI_BLOOM HV} ;

: STOP-C_hB CEASE-A_N_-DESIST ;

(the following word checks the parameter and either enables or disables CRAB

: CRAB? ANTI-BLOOM @ IF START-CRAB ELSE STOP-CRAB THEN ;

(The following words set or clear the ANTI-BLOOM parameter.

(They DO NOT start the anti-blooming they simply set the camera up so that it

(will be performed during the next exposure.

: CRAB-ON TRUE ANTI-BLOOM ! ;

: CRAB-OFF FALSE ANTI-BLOOM ! CEASE-AND-DESIST ;

the exposure time desired by the user is in the parameter table above.

it is stored as an upper and lower half, each 16 bits wide.

the variable exp_left used below is defined above, so as to accessable

to the timer inter_apt routines. It is decremented by the millisecond

timer when the exp flag is set. The EXPOSING is defined above as well.

EXP -START

CRAB?

FALSE E/KPOSING !

EXP_TI,_JE_LO @ F/PSI.ME_HI @ 0: SWAP 0: AND

ais57.for Thu, Sep 24, 1992 9:41 AM 39

IF

ELSE

EXP_TIME_LO @ EXP TIME_HI @ __/P_LEFT!

OPEN

TRUE EXPOSING !

THEN ;

EXP - PAUSE

CLOSE CEASE-AND-DESIST FALSE EXPOSING ! ;

EXP-RESUME

OPEN TRUE EXPOSING ! ;

EXP-ABORT

CLOSE CEASE-AND-DESIST FALSE EXPOSING ! 0 0 EXP LEFT! CISC? ;

EXP-LEFT?

EXP_LEFT@ D. ;

EXP-WAIT

BEGIN EXPOSING @ FALSE : UNTIL ;

EXP-STOP

CLOSE C_SE-AND-DESIST ;

EXPOSE CCD

EXP-START EXP-WAIT EXP-STOP ;

CCD Image Integration
.....................

INTEGRATE-LIGHT, INTEGRATE-DARK

Two functions are provided for integrating charge onto the CCD. In one

the shutter is opened and in the other ir is not. One is used to acquire

light images and the other for measuring dark current. In both cases, the

charge is integrated for EXP_TIME milliseconds.

INTEGRATELIGHT _POSE_CCD ;

INTEGRATEDARK

CRAB?

EXP_TIME_LO @ EXP_TIME_HI @ 0= SWAP 0= AND

IF

ELSE

EXP_TIME_LO @ EXP_TIME_HI @ MS-WAIT

CEASE-AND-DESI ST

THEN ;

Low Level Image Acquisition Routines
....................................

A set of low level image acquisition routines is provided

for those users who wish to build their own custom read routines

A small amount of additional overhead is associated with a read

aisS7.for Thu, Sep 24, 1992 9:41 AM 40

se_aence based on low level routines, due to increased participation

by -the 6SHClI, but very complicated read sequences can be

:onstm_cted. Not all users will wish to use these routines, as

ncrmai _per_eional modes are fully supported by the high level

image ac_disition routines.

Low level image acquistion routines include the following:

PIX-BIN

ROW-BIN

PIX-CLR

ROW-CLR

PIX-READ

RGW-RE_

shift N serial pixels into the summing well

shift N parallel rows into the serial register

clear N pixels from serial register

clear N rows off parallel register

read N pixels from serial register

read N rows from parallel register

These low level dsp routines can be used to build more complex

f_nctions by combining calls to them into forth words and

storing these in the dictionary.

DSP-16CMD is used by a number routines that take that particular form.

Only works for functions that pass a 16 bit value to the dsp.

Implemented here to save on dictionary space. Note that

not all the dsp conm_ands are issued this way. This word

expects the value and the conmmnd number on the stack. Returns nothing.

DSP-16_"_D (W W-)

DSP-WAIT CEASE-AND-DESIST

HV_

DSPI6

DSP-WAIT ;

(store the cor_nand number from the stack)

PIX-BIN

PIX-BIN (

CMD PIX BIN

shift w serial pixels into the sunrning well)

W -)

DSP-16CMD ;

ROW-BIN

ROW-BIN (

CMD ROW BIN

shift w parallel rows into the serial register)

w -)

DSP-16CMD ;

(PIX-CLR clear w pixels from serial register)

: PIX-CLR (W -)

CMD PIX DISCARD DSP-16CMD ;

(ROW-CLR clear w rows off parallel register)

: ROW-CLR (W -)

CMD ROW DISCARD DSP-16_4D ;

(PIX-READ read w pixels from serial register)

: PIX-READ (W -)

CMD_PIX_READ DSP-16C94D ;

ROW-READ read w rows from parallel register)

ROW-READ (W -)

CMDROW_READ DSP-!6_%_D ;

High Level Image Acquisition Routines
.....................................

SHIFT-IS

CLEAR

.READ

shift image portion of frame transfer device to storage)

clear the entire ccd array, num_clears times

read out the CCD based on format,

storage area only in a frame transfer device

aisS7.for Thu, Sep 24, 1992 9:41 AM 41

BIAS

DARK

OBS

acquire a bias frame, hum_images times

acquire a dark reference frame, num_images times

acquire a light frame, num_images times

SHIFT_IS shift image portion of frame transfer device to storage)

Not yet implemented in the AISI camera.

: SHIFT_IS (-)

DSP-WAIT CEASE-AND-DESIST C94DSHIFT_IS HV! DSP-WAIT ;

CLEAR clear the entire ccd array, num_clears times

All charge is cleared off the CCD. The DSP is told to stop

any curent action, the 68HCII waits until the DSP does so,

and then passes the clear cor_nand to the DSP. The 68HCII then

waits for the DSP to finish clearing the CCD.

This process is repeated NUM_CLEARS times. NUMCLEARS is a

a parameter the value of which may vary from 0 -> 655535.

CLEAR

NUM CLEARS @ 0: NOT

IF _0M_CLEARS @ 0

DO DSP-WAIT

CEASE-AND-DESIST

CMD_CLEAR HV_

DSP-WAIT LOOP

THEN

(READ read the image data off the CCD

(The DSP is told to stop any current action, the 68HCII waits until

(the DSP does so, and then passes the READ cormnand to the DSP. The

(68HCII then waits for the DSP to finish reading the image off the CCD.

(The CCD is read out the CCD based on the current format parameters.

(Only the storage area is read in a frame transfer device.

: READ

DSP-WAIT

CEASE-AND-DES IST

C%D READ HV_

DSP-WAIT

BIAS acquire a bias frame, num_images times

The shutter is closed, CISC stopped, the CCD is cleared, the

image data is read off the chip based on the current format parameters,

continuous clearing of the chip is begun, if enabled, and then a

delay of IM DELAY milliseconds is executed.

This entire sequence is executed NUM_IMAGES times.

BIAS (-)

NUM_IMAGES @ 0 DO

CLOSE

T-HF0

CLEAR

READ

CISC?

IM_DELAY_LO @ IM_DELAY_HI @ MS-WAIT

LOOP

(DARK acquire a dark reference frame, num_images times

(The shutter is closed, CISC stopped, the CCD is cleared, dark

(current is integrated for EXP_TIME milliseconds, the image data

(is read off the chip based on the current format parameters,

(continuous clearing of the chip is begun, if enabled, and then a

(delay of IM DELAY milliseconds is executed.

(This entire sequence is executed NUM_IMAGES times.

(If enabled, clock recombination anti blooming is performed during

aisST.for Thu, $ep 24, 1992 9:41 AM 42

-/ark frame integration.

: DARK _)

NL?4 IMAGES @ 0 DO

CLOSE

T-HF0

CLEAR

INTEGRATE_DARK

READ

CIcC7

IM DELAY_LO @ IM_DELAY HI @ MS-WAIT

LGOP

OBS

OBS acquire a light frame, num images times

The shutter is closed, CISC stopped, the CCD is cleared, the

shutter is opened, light is integrated for F/P_TIME milliseconds,

the shutter is closed, the image data is read off the chip based

on the current format parameters, continuous clearing of the chip

is begun, if enabled, and then a delay of IM DELAY milliseconds

is execuged.

This entire seqaence is executed NUM_IMAGES times.

if enabled, clock recombination anti-blooming is performed during

light integration.

(-)

NUM IMAGES @ 0 DO
CLOSE

ETOP-CIEC

_,EAR

EXPOSE CCD

.READ

CISC?

IM_DELAY_LO @ IM_DELAY_HI @ MS-WAIT

LOOP

Test Functions

A small set of test functions are provided for hardware debug.

Most are repetitive words which are useful for testing for testing small

subsets of the clock and analog cards.

RREAD read the CCD until terminal break

RCLEAR clear the CCD until terminal break

RBIAS clear, then read the CCD until treminal break

ROBS execute a light acquisition sequence until terminal break

RDARK execute a dark acquisition sequence until terminal break

VOLT-TEST test all clock card voltages

LATCH-TEST test all clock card latches

: ROBS

: RDARK

: RREAD

: READS

: RCLEAR

: RBIAS

BEGIN OBS

BEGIN DARK

BEGIN READ

BEGIN READ

?TERMINAL UNTIL ;

?TERMINAL UNTIL ;

?TERMINAL UNTIL ;

?TERMINAL UNTIL ,

BEGIN CLEAR ?TERMINAL UNTIL ;

BEGIN BIAS ?TERMINAL UNTIL ;

ais57.for Thu, $ep 24, 1992 9:41 AM 43

Startup Initialization
......................

The 68HCII performs certain functions on startup.

Version number is echoed, houskeeping takes place, an attempt is made to

initialize the DSP. if successful, the clock card is initialized through the

DSP. If not an error message is returned, and you might as well give up on

acquiring any image data or doing much else useful. A hardware failure is

the only likely cause of such difficulty. A sign on message is generated.

HEX

: INIT

6104 200 6100 @ 6102 @ - CMOVE

6100 @ 6102 @ - 6104 + 6 84 CMOVE

STOP-TEMP-CTL

DECIMAL

VERSION

FALSE EXPOSING !

INSTALL-TIMER INSTALL-TEMP-CTL

START-TIMER ETART-TEMP-CTL

0 CAM ID C{

20 ODELAY ! 20 CDELAY !

INIT-DSP

FALSE DSP OK

DSP-OK?

DSP_OK @

IF

" DSP ok revision : " DSP_REV @ U. CR

CISC-OFF

INIT-STATES

INIT-VOLTS

INIT-FORMAT

ALL-CLKS-_

CAM-ID_

ELSE

(guilty until proven innocent)

" DSP NOT RESPONDING ... camera control functions not available " CR

THEN

" AIS camera initialized " CR

: ASTART !

EEL_PROT (* UNPROTECT THE EEPROM

A44A DUP ASTART EE-! (* STORE THE AUTOSTART PATTERN

[' RESTOR] LITERAL CFA (* GET THE CFA OF OUR AUTOSTART WORD

DICT-START - (* DICT OFFSET OF AUTOSTART RDRD

EEDICT-START + (* LOCATION OF AUTOSTART WORD IN EEPROM)

DUP ASTART 2+ EE-! (_ STORE AFTER THE AUTOSTART PATTERN

EEPROT (* PROTECT THE EEPROM

CR ." autostart sequence stored " CR ;

Short Form Colrrnands

A set of short form conmands is provided which is particularly useful

to those very familiar with the cormmnd set or for progranmed hardware

interfaces, such as the Advanced Technologies VMEbus interface. All conmands

in the set are abbreviated to three letters in order to maximize the transfer

rate of comands between the host computer and the camera controller.

aisS7.for Thu, Sep 24, 1992 9:41 AM 44

Csnr_ands _re grouped by classes.
The slass iden:ifier, F, L, S, i, or C, is the first character in the name.

C -"

S :

F :

L :

I :

E :

coz_mands that manipulate format parameters

icweset level image acquisition routines

^ ! ;

STORE ASTART! ;

P! stores a parameter

it expects the value and parameter on the stack

: P!
DEPTH DUP 2 <

IF
CR ." needs the value and parameter on stack "

0 DO DROP LOOP
ELSE

DROP

(STACK _ (STACK) PARAM ! INIT-FORMAT

THEN

(C: Controller cor_mands }

: cxx COLD ;

: CIN INIT ;

restart the 68HCI! FORTH interpreter)

initialize the camera)

(S: System con_remds)

: ST@ TEMP! ;

: STC CCD-TEHP? ;

: ST! TEMP! ;

: SCF CISC-OFF ;

: SCT CISC-ON ;

: SBF CRAB-OFF ;

: SBT CRAB-ON ;

CCD temperature short form)

CCD temperature long form)

set the CCD temperature)

disable continuous clearing of the CCD)

enable continuous clearing of the CCD)

disable clock recombination anti-bloming)

enable clock recombination anti-blooming)

: SSO 200 0 EXP_LEFT! OPEN ;

: SSC CLOSE ;

(open the shutter)

(close the shutter)

(these system conmmnds are specific to AIS and AIS2 cameras

: SIV INIT-VOLTS ; (initialize CAM voltages)

: SIF INIT-FORMAT ; (iniitialize format parameters)

: SIS INIT-STATES ; (initialize timing parameters)

: SPD SET-PAR_DELAYS ; (set the parallel delay times to a new value)

(F: Format or parameter-related comnands)

: FP! PARAM ! ; (store a parameter)

: FP@ PARAM @ U. ; (fetch a parameter)

: FF? FORMAT? ; (fetch the format parameters in an ordered list)

: FSF INIT-FORMAT ; (initialize format parameters, redundant to SIF)

(L: Low-level commands)

: LPB PIX-BIN ;

: LRB ROW-BIN ;

: LPC PIX-CLR ;

: LRC ROW-CLR ;

: LPR PIX-READ ;

: LPR ROW-READ ;

: LC_ CAM-WRITE ;

: LCR CAM-READ ;

bin N pixels]

bin N rows)

discard N pixels)

discard N rows)

read N pixels)

read N rows)

write a value to a camera address)

read a value from a camera address)

(I: image-oriented or data producing commands)

: IIL EXPOSE_CCD ; (integrate light)

:IID INTEGRATE_DARK ; (integrate dark)

ais57.for Thu, Sep 24, 1992 9:41 AM 45

: IRD READ ;
: ICL CLEAR ;

{ rad the image off the CCD based on current format)

(clear the CCD of all charge)

:IAB BIAS ; (acquire bias)

: lAD DARK ; (acquire dark)

: IAL OBE ; (acquire light)

(special ones for AIS style cameras

: CEA CAM-ENABLE-ALL ;

: CE0 CAM0 CAM-ENABLE ;

: CEI CAM1 CAM-ENABLE ;

: CDA CAM-DISABLE-ALL ;

: CD0 CAM0 CAM-DISABLE ;

: CDI CAMI CAM-DISABLE ;

: ACE ALL-CLKS-EN

: ACD ALL-CLKS-DIS ;

HERE U.

DECIMAL

0 0 TIME{

0 0 EXP LEFT!

FALSE EXPOSING {

0 ACT_TMP !

150 DES_TMP

0 TMP CNT

5 MAX CNT !

0 DAC_VAL

I0 DAC_INC

FALSE DSP OK !

2048 CCDSER

I BIN SER

20 PRESER

0 UNDER_SER

0 ORG_SER

2048 READ_SER

20 POST_SER

0 OVER_SER

2048 CCD_PAR

I BIN_PAR

0 ORG_PAR

2048 READ_PAR

0 POSTPAR

0 OVER_PAR

200 PARDELAY

i00 ODELAY

I00 CDELAY

200 EXPTIME_LO

0 EXP_TIME_HI

2 NUM_CLEARS

i NUMIMAGES

50 IM_DELAY_LO

0 IM_DELAY_HI

FALSE CCLEAR

FALSE ANTI-BLOOM

aisST.for Thu, Sep 24, 1992 9:41 AM 46

0 ARCH !

O SPEED

0 CAM0_PDIR

0 CAM1 PDIR

0 DSP_REV

0 CAM iD C

0 CTL C_.M0 C

0 CTL _CAMI C

STORE

Appendix B: Camera Controller DSP56001 Source Code

aisdspS7.asm Thu, Sep 24, 1992 9:42 AM 1

;;7

;;x

;;_

;;_

_isDSPt.asm 12-1-91

DSP5600! Assembler source

for the Advanced imaging System

Copyright 1990

Advanced Techr_ologies Inc.

Peter Doherty

in order to _perate both channels and read out through both channels,

certain !imi<acions are placed on the read format. All subarrays are to

be cenzered on the CCD.

Tha_ simplifies things greatly, and the only issue now is direction of

c_mrge transfer.

define revision '#>57'

Include Files are Used to DEFINE and EQUate constants

to be used in this source file.

nolist

include 'aisequ57.h'

list

include 'aisdsp57.h'

; equates for i/o locations

; equates for read data storage

include 'aisdsp57.mac ; macro definitions

;; definitions of camera pointers

define out_store 'x:(r3)'

define id_iatch 'y:(r4)'

define ser_iatch 'y:(rt)'

define out_latch 'y:(r6)'

define ana_iatch 'y:(r7)'

;; Interrupt Service routine table

;; This "Table" actually contains executable code.

;; See DS56001 User's Manual chapter 8 for a discussion of

;; exception processing.

org p:$0000

;; interrupt routine table

;; this "vector table" actually holds executable code

;;

jr_p startup ;; cmd #0 : reset vector

nop

nop ;; cmd #I : stack error

nop

nop ;; cmd #2 : trace interrupt

nop

nop ;; crr_ #3 : software interrupt

nop

top ;; cmd #4 : irqa*

nod

nop ;; cmd #5 : irqb*

jsr sayOK ;; cmd #6 : DSP "OK" routine for system test

jsr cam'write ;; cmd #7 : write host data to DSP address

aisdsp57.asm Thu, Sep 24, 1992 9:42 AM 2

j sr

jsr

jsr

jsr

jsr

jsr

nop

nop

nop

nop

nop

nop

nop

nop

cam_read

volt_test

cam_ctl

init_volts

init_states

n_test

;; cmd #8 : fetch data from DSP address for host

;; cmd #9 :

;; cmd #A : write to CAM control latch

;; cmd #B :

;; cmd #C :

;; cmd #D : a 'word I use for testing stuff

;; cmd#E :

;; cmd #F :

;; cmd #i0 :

;; Host interrupt routine table

nop

nop

3sr init_format

3sr read

3sr clear

3sr pix_bin

3sr row_bin

3sr pix_discard

3sr row_discard

3sr pix_read

sr row_read

hop

nop

jsr shift IS

jsr abloom

nop

nop

;; cmd #ii :

;; cmd #12: used as SHADE by ATC5 cameras

;,

;,

;,

;,

;,

;,

;,

cmd #13: initialize readout format

cmd #14: read the CCD

cmd #i£: clear the ccd

cmd #16: bin N pixels

cmd #17: bin N rows

cmd #18: discard N pixels

cmd #19: discard N rows

cmd #1a: read N pixels

cmd #1b: read N rows

;; cmd #1c: unused

;; cmd #Id: shift image to storage (unimplemented)

;; cmd #1e: perform clock recomb, anti-blooming

;; cmd #If:

; *

; *

startup

startup

entry from dsp reset

memfill

init

move #$200,r0

j set

jclr

movep

move/n

jn_

#3,x:hsr, init ;; if HF0 is set, go initialize

#hrdf,x:hsr,memfill ;; else if no new host data, loop

x:hrx,al ;; else get the host data

al,p:(r0)÷ ;; store program word
memfill

movec #$0200,SR

movep #0,x:bcr

bset #10,x:ipr

bset #11,x:ipr

bset #0,x:pbc

;; min int level set to 2

;; all external mem access

;; Host int set to ...

;; priority level 2

;; set port b as Host port

;; we use portc2/sclk as enable for camera diff drivers

;; so we need to initialize it properly here.

;; actually it doesn't make any difference.

bset #2,x:pcd

movep #$4,x:pcddr

movep #$1f8,x:pcc

move #i_latch, r4

move #o_store,r3

move #s_latch, r5

move #o_latch, r6

move #a_latch, r7

;; cam_en low : camera enabled

;; set pc2/sclk as output

;; set sci pins as i/o, ssi as ssi

clr a

move al,x:initialized ;; we haven't been initialized yet

aisdspS7.asm Thu, Sep 24, 1992 9:42 AM 3

bset #2,x:hcr ;; enable Host interrupts

; main program icop

main

bclr

jcir

jclr

jcir

#bsy,x:hcr ;; clear dsp busy flag (hf2)

#states,x:initialized,main

#format,x:initiaiized,main

#voltages,x:initialized,main

cclear jclr

jmp
#cont_c i ear, x: hsr, cc iear

main

cclear ;; continuously clear the ccd

host_int_disable

move #>l,a

jsr par_shift

jsr set_clear

host_int_enable

jnlo main

;; disable host interrupts

;; shift a row

;; clear the serial register

;; enable host interrupts

;; back to main loop

;; my test word whatever it may happen to be at the moment

mytest

move #>l,a

jsr par_shift
rti

ir

; set_read read A1 pixels

;;

;; destroys r0

;;

;; expects A1 : number of pixels to read

;;

;; calls pixel_read, next A state

;;

;; depends on nothing

;; includes rst hi,rst lo,sbin, sw_lo, sw hi

set_read

jclr

tst

J_

#states,x:initialized,_ser_read

A ;; if nothing to do ...

_ser_read ;; ... do nothing.

do

move

nop

next ana

next ana

rst_hi

rstlo

next_ana

next ana

shin

do

AI, ser read

#ana_state0,rl

5, _sw

;; rl points at astate table

;; pipeline delay

;; two states before rest

;; reset

;; two states after reset

;; shift binned serial pixel

;; five states before sunning well

sisdspS7,asm Thu, Sep 24, 1992 9:42 AM 4

next_arla

sw

swl o

swhi

do

next_alla

_pixel

nop

_s er_r ead

rts

#5, _pixel

;; sunning well

;; five states after sunrning well

i,

; seT_clear

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

ser_clear

jclr

_qlove

jsr
_ser clear

rts

clears the serial register

destroys A

expects nothing

calls ser_discard

depends on nothing

includes nothing

#format,x:initialized, seT_clear

x:ccd_ser,A

ser_discard

;ser discard discard AI pixels from serial register

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

s er_di scard

jclr

tst

jc::_!

rst_hi

sw_hi

do

ser_shift

_s er_di s

sw_lo

swhi

;; rst lo
ser .discard

destroys r0

expects AI : number of pixels to discard

calls nothing

depends on nothing

includes rst_hi, rst_lo, sw_hi, sw io, SeT shift

#states,x:initialized,_ser_discard

A

_ser_discard

Al,_ser_dis

;; shift pixels

;; clear out the sunning well

;; don't bother going low

aisdsp57.asm Thu, Sep 24, 1992 9:42 AM 5

rts

; par read read A1 rows off the CCD

par_read

jclr _fcrmas,x:initialized,_par_read

tst A

jeq _par_read

;; if no rows to read...

;; .. then do nothing.

do AI, _par_read

move _>i,a

jsr par_min ;; bin one row

move X :pre_ser, a

jsr ser_discard ;; serial pre-prescan

move x:underser,a

jsr sea __ad ;; serial underscan

move x:org_ser, a

jsr ser discard ; serial prescan

move x:read_ser,a

jsr ser_read ; serial read

move x:poss_ser,a ;; serial postscan

jsr ser_discard

move x:over__ser,a

jsr ser_read ;; serial overscan

nop

_par_read

rts

; par_discard discard the number of rows in acc A off the current ccd

;;

;;

;;

;;

;;

;;

;;

;;

;;

par_di s ca rd

tst

Jeg

destroys r0

expects AI = number of rows to discard

calls par shift, ser__clear

depends B, x0

a

_c i ear

;; if there's nothing to do...

;; ... do nothing.

_clear

ali cams

move

move

rst_hi

jsr

jsr

jsr

rstlo

hop

rts

#$aaaa,r0

r0,ser_latch

par shift

set clear

ser_idle

;; enable all CAMs

;; set all clocks to high

;; shift parallels

;; clear the serial register

;; put serials back to idle

;; return

aisdsp57.asm Thu, Sep 24, 1992 9:42 AM 6

; par bin bin A1 rows

;;

;; destroys nothing

;;

;; expects A1 : number of rows to bin

;;

;; calls par shift

;;

;; depends nothing

par_bin

jclr #format,x:initialized,__par_bin

tst a ;; if nething to do ...

jeq _par_bin ;; ... de nothing.

do al,_par_bin

.move x:binpar,a

jsr par_shift

_par_bin

rts

]ar_shift shift A1 rows

,s

t,

,s

,t

par_shift

destroys

expects

calls

depends

includes

jclr

tst

jeq

al l_cams

rst_hi

rep

nop

clamp_hi

do

rO, AI

AI : number of shifts to perform

nothing

nething

tg_hi, tg_lo

#states,x:initialized,_par_shift

a

_par shift

#I00

al,_par_shi ft

;; if no shifts to do...

;; ... do nothing.

;; reset the output

;; and hold it that way

;; for a long while

;; turn on the preamp clamp

move

jset
move

jr_
camO rev

rep

move

move

move

_init_camO

move

3set

move

jr_
_caml_rev

rep

move

#camO par_stateO, rO

#0, x :pdir_camO, _camO_rev

#1,nO

_ini t_camO

x:n par_states

(rO) +

(rO) -

#$ffff,nO

#caml_par_stateO,rl

#O,x:pdircaml,_caml_rev

#l,nl

_initcaml

x:n_par_states

(rl) +

;; rO points to camO parallel states

;; if in reverse, init different

;; in forward inc = 1

;; point 1 past end of state table

;; point at last entry

;; increment : -i

;; rl points to caml parallel states

;; if in reverse, init different

;; in forward inc = 1

;; point 1 past end of state table

aisdspST.asm Thu, Sep 24, 1992 9:42 AM 7

_ve !rl)-

_init :am!

;; point at last entry

;; increment = -!

move _par_wait 0, r2

move _p_latch, r7

5o x :n_parstates, _par_loop

; ; move the next state for camO

camO_cn!y

jclr

tghi

J_
_c _mO_t g_! o

tglo

_camO_next_p

move x : [rO)+nO, al

move al,y: (r7]

;; move the next state for caml

caml_only

jcir

tghi

J_
_caml_tg_l o

tgl o

_carnl _ext p

move x: (rl) ÷nl, al

move ai,y: (rT]

;; r2 points at parallel delay table

;; use r7 as pointer, must restore later

#tg state_bit,x:(rO),_camO_tg_lo ;; if the next state doesn't

;; include transfer gate high..

_sam0_nex-___p ;;.. don't set it high.

;; move a state, r7 points at latch

_tg_state_bit,x:(rl),_caml_tg_io ;; if the next state doesn't

;; include transfer gate high..

_caml_next_p ;;.. don't set it high.

;; move a state

rep x:(r2)+

nop

_par_loop

nop

_/oar_shift

all_cams

move _a latch, r7

clamp_lo

rep #I00

nop

rts

;; do a wait

;; restore a_latch ptr

;; turn off the preamp clamp

;; and hold it that way

;; for a long while

cam write accept data from host

and write it to a DSP address

expects address, then address space, then data

; cmd7

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

cam_write

destroys a, r0

expects nothing

calls host2a

depends nothing

includes nothing

busy

jsr host2a

move al,rl

jsr host2a

move a, b

jsr host2a

tst b

jeq writeX

;; get the address

;; get address space 0:X, I=Y

;; get the data

;; test address space ID

;; if space = i

aisdspST.asm Thu, $ep 24, 1992 9:42 AM 8

move al,y: (rl) ;; ... write to Y ram

imp _cam write ;; ... then return

writeX ;; else

move al,x:(rl] ;; ... write to X ram
cam write

rti ; ; return

; cmd8

; cam_read

;;

;;

;; destroys

;;

;; expects

;;

;; calls

;;

; ; depends

;;

; ; includes

;;

cam read

readX

camread

get data for host from DEP address

expects address, then address space, returns data

a, rl

nothing

nothing

a2host, host2a

nothing

busy

jsr host2a ;; get the address

move al,rl

jsr host2a ;; get address space 0=X, I=Y

tst a ;; test address space !D

jeq _readX ;; if space = 1

move y:(rl),al ;; ... read from Y ram

jmp _cam_read ;; ... then return

;; else

move x:(rl),al ;; ... read from X ram

jsr a2host ;; send data to host

rti ;; return

; cmd9 :

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

volt test

;; clr

;; move

;; move

;;_testl move

;; rep

;; move

;; add

;; rep

;; nop

;;_volt_test

;; jn_
rti

volt_test

test the DAC's on the current CAM

destroys a, r0, xl

expects

calls

depends

includes

a

#>l,xl

#$fff,x0

#par_lo,r0

#24

al,y:(r0)+

xl,a

x0

;; point at first address

;; write to seq addresses

;; increment a

_testl ;; go do it some more

;; THERE'S NO WAY OUT OF HERE !!!!

aisdsp57.asm Thu, Sep 24, 1992 9:42 AM 9

; _ OxOA : cam_czl

;;

;; "_Tite ts the _ control latch of current

;; destrcys a, r0, xl

;;

;; expects

;;

; ; calls

;;

; ; depends

;;

; ; includes

;;

cam_c t !

move #c !arch, r0 ;; point at ccntrol latch

jsr host2a ;; get the datum

move al,y:(r0) ;; store it

rti

;;

;; destroys
;;

;; expects
;;

;; calls

;;

;; depends

;; includes

;;

init_volts

busy

movep

move

do

jsr

move

volts

movep

al l_cams

bset

rti

i,

;; cmd 0x0B : init_volts

;;

;; gets the ccd voltages from the Host and writes them to 5he DACs.

;; see aisdsp.h for the order in which they must arrive.

rl

nothing

host2a

rl

nothing

#$ffff,x:bcr

#par_lo,rl

#n_volts,_volts

host2a

al,y:(rl)+

#0,x:bcr

;; setup wait states

;; point rl at par_Io

;; do loop n_volts times

;; set DAC, incr=_ment DAC ptr

;; back to 0 wait states

#voltages,x:initialized

; HV3:

;;

;7

;;

;7

;;

;;

;;

;;

;;

;;

;;

7;

;;

7;

init_states

gets parrallel states and waits, serial states,

and analog states and waits from Host. stores them

in x memory

destroys rl

expects nothing

calls host2a

depends rl

includes nothing

aisdspS7.aam Thu, Sep 24, 1992 9:42 AM 10

init states

busy

jsr host2a

move al, x :n_oar_states

move al,b0

move #cam0par_state0,rl

do b0,_cam0

jsr host2a

move al,x:(r!}÷

cam0

move #caml_par_state0,rl

do b0,_caml

jsr host2a

move al,x:(rl]_

_caml

move #par_wait0,rl

do b0,_par_waits

jsr host2a

move al,x:(rl)+

_par waits

jsr host2a

move al,x:n_ser_states

move #ser_state0,rl

do al,_ser init

jsr host2a

move al,x:(rl]+

_ser_init

jsr host2a

move al,x:n_a/_.a_states

move _ar_a_state0,rl

jsr state_loop

jsr host2a

move al,x:n_ab_states

move #ab_state0,rl

jsr state loop

bset #states,x:initialized

rti

;; get the number of Parallel states

;; get the states for cam0

;; get the states for caml

;; get the parallel clock delays

;; get the number of serial states

;; get the serial states

;; ... one at a time.

;; get the number of analog states

;; get the number of ab states

;; states are initialized now

; cmd 12 : shade

;; used by ATC5 cameras, not implemented in AIS or AIS2 cameras

shade

rti

;;

;;

;;

;;

;;

cmd 13 : init_format

acquire a new set of readout data from Host

including:

ccd_ser

bin_set
; serial register length

; serial binning number

aisdspS7.asm Thu, Sep 24, 1992 9:42 AM 11

;;

;;

;;

;;

pre_ser ; serial register extension length

under_set ; serial register underscan

org_ser ; serial prescan length

read ser ; serial read length

post_ser ; serial postscan length

over_set ; serial register overscan

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

; ; destroys

;;

;; expects

;;

;; calls

;;

;; depends

;;

;; includes

init_format

busy

move

do

jsr

move

_format

bset

rti

ccd par ; parallel register length

bin_par ; parallel bi_ming number

org_par ; parallel prescan length

read par ; parallel read length

post_par ; parallel postscan length

over_oar ; parallel register overscan

pdir_CAM0 ; parallel shift direction for CAM0

pdir_C_l ; parallel shift direction for _kMI

n_fmtoarams equ 18

rl

nothing

host2a

rl

nothing

#cod ser, rl

#n_fmt_params,_format

hos_2a

al,x:(rl)+

#format,x:initialized

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

read

cmd 14: read

reads the ccd out depending on the format parameters

destroys A

expects nothing

calls par_discard, ser clear, pbin, set_discard, ser_read

depends nothing

includes nothing

busy

jsr

jsr

jc!r

move

jsr

jsr

;; set dsp busy flag

par_idle ;; put paralles into idle state

set_idle ;; put serials into idle state

#format,x:initialized,_read

x:org_par,a ;; parallel prescan

par_discard

ser_clear ;; clear ser reg again

aisdsp57.asm Thu, Sep 24, 1992 9:42 AM 12

_read

move x:read_par, a ;; read rows

jsr par_read

move x:post_par,a ;; parallel postscan

3st par_discard

rti

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

clear

_clear

cmd 15 : clear

clear the ccd imager

destroys A

expects nothing

calls par_dis

depends nothing

includes nothing

busy

jsr

jsr

jclr

move

jsr

rti

par idle

ser_idle

;; put paralles into idle state

;; put serials into idle state

_format,x:initialized, clear

x:ccd par,A

par_discard

;;

;;

;;

;;

;;

;;

;;

pix bin

; cmd 16 : pix_bin

;;

;; bin N pixels

;;

destroys al

_mixbin

expects nothing

calls host2a

depends nothing

includes sw_hi,ser_shift

busy

jclr #states,x:initialized,_pix_bin

jsr host2a

do al,_/oixbin

ser_shift

rti

aisdsp57.asm Thu, Sep 24, 1992 9:42 AM 13

; cmd 17 : rsw_bin

;;

;; shift N rows

;;

;; destroys

;;

;; expeczs

;;

;; calls

;;

;; depends

;;

;; includes

;;

al,Al

nothing

host2a, par_shift

nothing

nothing

rcw bin

row bin

busy

Jsr host2a

jsr par shift

rti

; cmd 18 : pix_discard

;;

;7

;;

;;

;;

;;

;;

;;

;;

;;

pix discard

busy

jsr

jsr

_pixdiscard

rti

discard N pixels

destroys A

expects nothing

calls host2a,

depends no_hing

includes nothing

ser_discard

host2a

ser_discard

; cmd 19 : row_discard

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

row discard

busy

jsr

jsr

row discard

rti

discard N rows

destroys

expects

calls

depends

includes

A

nothing

par_discard, set clear

nothing

nothing

host2a

par_discard

aisdsp57.asm Thu, Sep 24, 1992 9:42 AM 14

; cmd la : pix_read

;;

;; read N pixels

;;

;; destroys A

;; expects nothing

;; calls host2a,

;;

;; depends nothing

;;

;; includes nothing

;;

pix_read

_mix_read

ser_read

busy

jsr host2a

jsr ser_read

rti

; cmd IB : row_read

;;

;; read N rows

;;

;; destroys

;; expects

;; calls

;;

;; depends

;; includes

;;

rowread

_row read

nothing

host2a, par_bin,

busy

jsr host2a

jsr par_read

rti

ser_discard, ser_read

t,

; cmd ic : unused

; cmd id : shift_IS

;;
;; shift image to storage on a frame transfer device

;;

;; unimplemented

shift IS

rti

; cmd Oxle : abloom perform clock recombination anti blooming

;;

;; destroys

aisdsp57.asm Thu, Sep 24, 1992 9:42 AM 1 5

;;
;;

;;

;;

;;
;;
abloom

=_bprep

ab loop

;;

abloom

expects

calls

depends

includes

jclr

jcir

a i I_cams

move

move

do

[Rove

move

rep

top

jsen

nocams

rti

#states,x:initialized, abloom

#voltages,x:initialized,-abloom

#p_latch, rl

#ab_state0,r0

x:n_ab states,_ab loop

x:(rO)+,xO

xO,y:{r!]

x:(rO)+

;; ab state 0 to x0

;; then to parallel clock latch

#continue,x:hsr,_ab_.orep do clock recomb, anti-blooming?

;* state_loop

; assumes x0 holds the number of states and waits to get

;;

;;

;;

;;

;;

;;

;; calls

;;

;; depends

;;

;; includes

;;

state_loop

do

jsr
Itlove

jsr
move

_state_loop
rts

destroys

expects

rl

al : number of state/wait pairs to get

rl = pointer to state/wait table

host2a

rl

nothing

al,_state_loop

host2a ;; get a state

al,x:(r!]÷

host2a ;; get a wait time

al,x:(rl)+

; host2a

;; Waits for data from the Host

;; Moves the data into a

;;

;; destroys a

;;

;; expects nothing

;;

;; calls nothing

;;

;; depends nothing

;;
host2a

aisdspS7.asm Thu, Sep 24, 1992 9:42 AM 16

clr a

j clr #Pmdf, x :hsr, host2a

movep x: hrx, a!

rts

;; get the data into al

;; a2host

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

a2host

Moves data from register al to the Host

destroys nothing

expects al to hold useful data

calls nothing

depends nothing

note : this is not presently used, but this is how you'd do it.

jclr #htde,x:hsr,a2host

movep al,x:htx

rts

;; par_idle

;;

;; destroys

;;

;; expects

;;

;; calls

;;

;; depends

;;

par_idle

jclr

move

camO_only

move

rep
move

move

nop
move

move

caml_only

move

rep

move

move

nop

move

move

a i l_cams

_par_idle
rts

sets the parallel clocks to the idle state

x0,r0,a

nothing

nothing

#states,x:initialized,_par idle

#p_latch, rl

#cam0_par_state0,r0 ;;

x:n_par_states

(r0)+ ;;

(r0) - ; ;

x:(r0),al

al,y:(rl)

enable cam0

r0 points at parallel state table

r0 now points at place PAST table

r0 now points to last place IN table

;; put that state into a

;; write the idle state to cam0

#caml_.par_state0,r0 ;;

x:n par_states

(r0) + ; ;

{r0) - ; ;

enable caml only

r0 points at parallel state table

r0 now points to place PAST table

r0 now points to last place IN table

x:(r0),al ;; move that state to a

al,y:(rl) ;; write the idle state to caml

;; set_idle

;; sets the serial clocks to the idle state

;;

;; destroys xO,rO,a
;;

aisdsp57.asm Thu. Sep 24, 1992 9:42 AM 17

set_idle

ser idle

expects

calls nothing

depends nothing

jc!r

_!icam, s

move #ser_state0,r0

rep x:n set states

.move (rO)_

move (r0)-

move x:(r0),a

m_ve al,ser iatch

rts

#sta%es,x:initialized, ser_idle

; cmd 6

;;
sat/OK

sayOK respond to 6811 for test purposes

allows 6811 to test if DSP is operating properly

clr a

move #$4f,al

jsr a2hes_

move #$4b,al

jsr a2host

move revision, al

jsr a2host

rti

;; say 'O'

;; say 'K'

;; pass revision number

aisdspS7.mac Thu, Sep 17, 1992 1:56 PM 1

;; aisdsp51.mac

;; macro definitions for use with aisdsptl.asm

host int_enable MACRO

bset _2,x:hcr

ENL_4

host_intdisable MACRO

bcir #2,x:hcr

ENDM

;; NOTE :

;; in all of these macros it is assumed that r3 points to out_store,

;; the internal memory ication we use to store the last value written

;; to the output latch on the clock card.

;; rsthi

;;

;; set the CCD reset gate high

rsthi MACRO

bset #rst_bit,out_store

move out_store,y0

move y0,out_!atch

ENDM

;; rst_Io

;;

;; set the CCD reset gate low

rst_lo MACRO

bclr #rst_bit,out_store

move out_store,y0

move y0,out_!atch

ENDM

;; swhi

;;
;; set the CCD suraning well high

swhi MACRO

bset #sw_bit,out_store

move out_store,y0

move y0,out latch

ENDM

;; sw_lo

;;

;; set the CCD surmming well low

sw_lo MACRO

bclr #sw_bit,out_store

move out_store,y0

move y0,out_latch

ENDM

;; tg_hi

;;

;; set the CCD transfer gate high

tg_hi MACRO

bset #tg_bit,out_store

move out_store,y0

move y0,out_latch

ENDM

;; tg_lo

;;

;; set the CCD transfer gate low

tg_lo MACRO

bclr #tg_bit,out_store

aisdsp57.mac Thu, Sep 17, 1992 1:56 PM 2

move cut_stor_, y0

_ve y0, out_latch

m--krSM

; ; clamp_lo

;;
;; set the prea_ clamp bit low (clamp off)

ci am_p_l o YACRO

bclr _c iamp_bi t, out_store

move out_store, y0

move y0, out_latch

ENTAM

; ; clamp hi

;;

;; set the preamp clamp bit high (clamp on)

cl_mphi MACRO

bset _ciamp_oit,out store

move sut_store,y0

move y0,out_latch

ENI24

;; ser_shift

;;

;; shift one serial pixel

;; operates the same on all cams simultaneously

ser_shift

n_Dve

top

move

do

move

s shift

nop

ENDM

MACRO

#ser_state0,r0

x:(r0)+,a

x:n_ser_states,_s_shift

x:<r0)+,a a, ser latch

;; sbin

;;
;; bin one serial superpixel

sbin MACRO

do x:bin_ser,_s_bin_loop

ser_shift

s bin loop
ENDM

;; next Analog state macro

;; destroys A

;; expects rl points at next analog state

next_ana _ACRO
move x:(r!)+,Al ;; astate in

move Al,ana latch ;; analog state out

rep x:(rl)+ ;; perform await

nop

ENDM

;; busy flag for host

busy MACRO

bset #3, x :hcr

EN-DM

;; set the DSP busy flag

aisdsp57,mac Thu, Sep 17, 1982 1:56 PM 3

;; .macros for selecting clock/analog modules

a i l_cams MACRO

move #>$0,y0

move y0,id_latch

ENDM

no caINs MACRO

move #>$ff,y0

move y0,id_latch

ENDM

cam0 only MACRO

move #>$fe, y0

move y0,id_latch

ENDM

caml_only MACRO

move #>$fd, y0

move y0 id latch

ENDM

;;c m2_only

;;

;;

;;

;;

;;cam3 only
;;

;;

;;

;;

;;cam4_only

;;

;;

;;

;;camS_only

;;

;;

;;

;;cam6_only

;;

;;

;;

;;

;;cam7_only

;;

;;

MACRO

move #>$fb, y0

move y0 id_latch

ENDM

MACRO

move #>$f7,y0

move y0 id_latch

ENDM

MACRO

move #>$ef,y0

move y0 id_latch

-:_-DM

MACRO

move #>$df, y0

move y0 id_latch

ENDM

MACRO

move #>$bf,y0

move y0 id_latch

ENDM

MACRO

move #>$Tf,y0

move y0,id_latch

ENDM

;; end of macro definitions

aisequS7.h Wed, Dec 4, 1991 12:03 PM 1

; motorola standard i/o equates.

; equates for dsp56000 i/o registers and ports

register addresses

bcr equ Sfffe

pbc eqd $ffeO

pbddr equ Sffe2

pbd equ $ffe4

pcc equ $ffel

pcddr equ Sffe3

pcd _ $ffe5

; port a bus control register

; port b ccntrol register

; port b data direction register

; port b data register

; port c control register

; port c data direction register

; port c data register

; ..

; equates for host interface

; ..

register addresses

hcr equ Sffe8

hsr equ Sffe9

hrx equ $ffeb

htx equ Sffeb

; host control register

; host status register

; host receive data register

; host transmit data register

; host control register bit flags

hrie equ 0

htie equ 1

hcie equ 2

hf2 equ 3

hf3 equ 4

; host receive interrupt enable

; host transmit interrupt enable

; host cormsand interrupt enable

; host flag 2

; host flag 3

host status register bit flags

hrdf equ 0 ; host receive data full

htde equ 1 ; host transmit data empty

hcp equ 2 ; host cor_nand pending

hf equ $18 ; host flag mask

hfO equ 3 ;hcst flag 0

hf! equ 4 ; host flag 1

dma equ 7 ; _ status

; ..

; equates for serial conlmunications interface (sci)

; ..

register addresses

srxl equ $fff4

s_n equ $fff5

srxh equ $fff6

stx! equ Sfff4

stxm equ Sfff5

stxh eqd Sfff6

stxa equ $fff3

scr equ $fffO

ssr equ Sfffl

sccr equ Sfff2

; SOl

; SCl

; sol

; sol

;scl

; scl

;scl

; sci

; sci

; sci receive data register (low)

receive data register (middle)

receive data register (high)

transmit data register (low)

transmit data register (middle)

transmit data register (high)

transmit data address register

control register

status register

clock control register

aisequ57.h Wed, De(: 4, 1991 12:03 PM 2

sci control register bit flags

wds

wdsO

wdsl

wds2

sbk

wake

rwi

woms

re

te

ilie

rie

tie

tmi e

equ

equ

equ

equ

equ

equ

-=qu

equ

egu

equ

equ

equ

equ

$3

0

1

2

4

5

6

7

8

9

i0

ii

12

13

; word select mask

; word select 0

; word select 1

; word select 2

; send break

; wake-up mode select

; receiver wake-up enable

; wired-or mode select

; receiver enable

; transmitter enable

; idle line interrupt enable

; receive interrupt enable

; transmit interrupt enable

; timer interrupt enable

sci status register bit flags

trne eql/ 0

tdre equ 1

rdrf equ 2

idle equ 3

or equ 4

pe equ 5

fe equ 6

r8 equ 7

; transmitter empty

; transmit data register empty

; receive data register full

; idle line

; overrun error

; parity error

; framing error

; received bit 8

sci clock control register bit flags

cd equ Sfff

cod equ 12

scp equ 13

rcm equ 14

tcm equ 15

; clock divider mask

; clock out divider

; clock prescaler

; receive clock source

; transmit clock source

; ..

; equates for synchronous serial interface (ssi)

; ..

register addresses

rx equ Sffef

tx equ Sffef

cra _ Sffec

crb equ $ffed

str equ $ffee

tsr equ $ffee

; serial receive data register

; serial transmit data register

; ssi control register a

; ssi control register b

; ssi status register

; ssi time slot register

; ssi control register a bit flags

pm equ $ff

dc equ $1fO0

wl equ $6000

wlO equ 13

wll equ 14

psr equ 15

; prescale modulus select mask

; frame rate divider control mask

; word length control mask

; word length control 0

; word length control 1

; prescaler range

; ssi control register b bit flags

of equ $3

of O equ 0

ofl equ i

scd equ $Ic

scdO equ 2

scdl equ 3

scd2 equ 4

sckd equ 5

fsl equ 8

syn equ 9

gck equ I0

; serial output flag mask

; serial output flag 0

; serial output flag 1

; serial control direction mask

; serial control 0 direction

; serial control 1 direction

; serial control 2 direction

; clock source direction

; frame sync length

; sync/async control

; gated clock control

aisequ57.h Wed, De(: 4, 1991 12:03 PM 3

mod equ i!

ste _ 12

sre ecfd 13

stie equ 14

srie equ 15

; mode select

• ssi transmit enable

; ssi receive enable

• ssi transmit interrup5 enable

; ssi receive interrupt enable

; ssi status register bit flags

if equ 52 ; serial input flag mask

if$ _ 0 ; serial input flag 0

ill equ ! ; serial input flag 1

tfs equ 2 ; transmit frame syp.c

rfs equ 3 ; receive frame syr.c

rue equ 4 ; transmitter under_m/n error

roe equ 5 • receiver overr_n error

tde e cfd 6 ; transmit data register empty

rdf equ 7 - receive data register full

register addresses

=pr equ 5ffff ; interrupt priority register

interrupt priority register bit flags

ial eqd $7 ; irqa

iaiO equ 0 ; irqa

iall equ I - irqa

iai2 equ 2 ; irqa

ib! equ 538 ; irqb

iblO equ 3 ; irqb

ibll equ 4 ; irqb

ibl2 equ 5 ; irqb

hpl equ 5c00 ; host

hplO e c/i/ I0 ; host

hpll equ II

;; ssl equ 53000

sslO equ 12

ssll equ 13

scl equ 5c000

sclO equ 14

scll equ 15

mode mask

mode interrapt priority level {low)

mode interrdpt priority level (high)

mode trigger mode

mode mask

mode interrupt priority level (low)

mode interrupt priority level (high)

mode trigger mode

interrupt priority level mask

interrupt priority level mask (low)

host interrupt priority level mask (high)

; ssi interrupt priority level mask

ssi interrupt priority level mask (low)

ssi interrupt priority level mask (high)

sci interrupt priority level mask

sci interrupt priority level mask (low)

sci interrupt priority level mask (high)

aiiDSP57.h Thu, Jul 16, 1992 9:04 PM 1

; aisdsp.h

; an equate file with definitions for the

; variable stsrage locations used in aisdsp.asm

ORG ×:0

ccd_ser ds I

bin_ser ds i

pre_ser ds 1

under_ser ds !

org_ser ds !

read_ser ds 1

post_set ds 1

over_ser ds 1

ccdpar ds i

binpar ds !

org_par ds !

read_lear ds 1

post_par ds 1

over par ds !

pdir_cam0 ds 1

pdir_caml ds 1

n_fmt-params equ 16

ORG x:20

tempO

; serial register length

; serial binning number

; serial register extension length

; serial register underscan

; serial prescan length

; serial read length

; serial postscan length

; serial register overscan

; parallel register length

; parallel binning number

; parallel prescan length

; parallel read length

; parallel postscan length

; parallel register overscan

; parallel shift direction for CAM0

; parallel shift direction for CAM1

ds i ; a useful, very temporary storage location

;; the following location "initialized" is a set of bits that we can

;; test to see if various things have been initialized. We would not

;; want to manipulate parallel clocks or do a readout if the states

;; have not been initialized, for instance, we would not want to turn

;; the clocks on if they have not been initialized, nor would we

;; want to do a readout if the format has not been initialized.

;; bit 0 = states bit 1 = format bit 2 = voltages

;; bits will be set to a one when the related parameters are initialized

;; and will be cleared otherwise.

initialized ds I

states equ 0

format equ i

voltages equ 2

; storage for our state counts,
;; they must be here so we can use direct addressing

n_par_states ds i

n ser states ds i

n_ana_states ds i

nab states ds 1

o_store ds 1 ; storage for output latch data

; parallel shift control constant storage locations

ORG x: $40

cam0_par_state0 ds i

cam0_loar_statel ds i

cam0_par_state2 ds i

cam0_par state3 ds 1

cam0_loar_s tat e4 ds I

cam0 par state5 ds 1

cam0_parstate6 ds 1

cam0_parstate7 ds 1

c_m0-par_state8 ds 1

aisDSPS7.h Thu, Jul 15, 1992 g:04 PM

cam0_par snane9

carol_par state0

caml_par_stanel

cami_par state2

carol_par state3

carol_par state4

caml loaf stane5

cam_i_par state6

carol par s ta z e 7

caml_oar state8

carol_oar stase9

par_wait0

par_waltl

parEwait2

par wait3

par_walt4

parEwait5

par wait6

par_walz7

par wait8

par wait9

ds

ds

ds

ds

ds

ds

ds

ds

ds

ds

ds i

ds i

ds i

ds i

ds i

ds I

ds i

ds i

ds i

ds I

; serial shift control constant storage locations

;; for now there will be NO serial wait states performed !!

ORG x:$80

ser_state0 ds 1

ser_statel ds !

ser_state2 ds !

ser state3 ds 1

set_state4 <is 1

set_state5 ds 1

ser state6 ds 1

set_state7 ds 1

ser_state8 ds 1

set_state9 ds 1

; analog control constant

ORG

aria_state0

anawait0

ana_statel

ar_a_waitl

ana_state2

ar_a wait2

area_state3

aria_walt3

aria_state4

anaEwait4

aria_state5

aria_wait5

ana state6

anaEwait6

aria_state7

aria_walt7

area_state8

_nazwait8

ana_state9

anacwait9

x:SaO

ds 1

ds 1

ds 1

ds 1

ds 1

ds 1

ds 1

ds 1

ds 1

ds 1

ds 1

ds 1

ds 1

ds 1

ds 1

ds 1

ds 1

ds 1

ds 1

ds 1

storage locations

;7 ab_states and ab_waits are constants used in

;; clock recombination anti-blooming mode

aisDSP$7.h Thu, Jul le, 1992 9:04 PM 3

ORG x: $c0

ab_state0 ds 1

ab_wait 0 ds 1

ab_statel (is i

ab_waitl ds 1

ab_state2 ds 1

ab_wait2 ds 1

ab_state3 ds 1

ab_wait3 <Is 1

;; equates for off chip locations,

;; equates for clock board dacs

nvolts equ 24

par_lo equ $ff08

par mid equ Sff09

par_hi equ $ff0a

ser_lo equ Sff0b

ser_mid equ $ff0c

set_hi equ Sff0d

tg_lo equ Sff0e

ng_hi equ $ff0f

sw io equ $ffl0

sw_hi equ $ffll

sub equ $ffl2

Ig equ Sffl3

rst_lo equ Sffl4

rst_hi equ $ffl5

vrd equ Sffl6

rod equ Sffl7

xl_lo equ $ffl8

xl_hi equ Sffl9

x2_lo equ Sffla

x2_ni equ Sfflb

x3 io equ Sfflc

x3_hi equ $ffld

x4_lo equ Sffle

x4_hi equ Sfflf

including latches and dacs

;; equates for clock board latches

i_latch equ $ff00

s_latch equ $ff20

p latch equ $ff24

o latch equ $ff28

a_latch equ Sff2c

c_latch equ $ff30

; equate for bit numbers used in bitset cor_nands

; bits in output control latch

tg_bit equ 0

sw_bit equ 1

rst_bit equ 2

clamp_bit equ 3

extra2_bit equ 4

exnra3bit equ 5

extra4 bit equ 6

;; equates for host

;; continuous clear

;; anti-blooming

cont_clear equ 3 ;; hf0

continue equ 4 ;; hfl

control flags used to enable

and clock recombination

;; equate for host flag 2

;; used to tell the host when the DSP is busy

bsy equ 3 ;; hf2

;; equate for the eighth bit in the parallel

;; states. This bit tells the DSP when to

aisDSPS7.h Thu, Jul 16, 1992 9:04 PM 4

;; set the transfer gate high

tg_state_bit ecfa 3

clamp_state bit equ 9

;; par___roup is the number of parallel shifts

;; to perform as a group in parallel discards

par_group equ I0

Appendix C: VMEbus Interface Board Source Code

HEX

7400 TIB !

200 TIB 2+ !

7600 DP

ATDvme.FOR forth code to run on the ATD VME interface board

c Copyright 1991

Advanced Technologies Inc.

P. Doherty, H. Meyer

REV. 4 modified for three-letter command abbreviations

REV. 3 changed the way the address switches work

REV. 2 fixed up serial text data transfers

added error checking

added separate error register

changed SEND_STRING. function to one character at a time

REV. 1 modified ATCVMERI7. for vme code for ATC5 cameras

so that it will work with both the ATC5 cameras and

AIS style cameras running rev 5 or higher

0 CONSTANT FALSE

1 CONSTANT TRUE

* useful words for performing bit manipulations

* these words operate on the number currently on the top of the stack.

* MASK-X leaves true if bit x set else false

• MASK-7 0080 AND ;

. MASK-6 0040 AND ;

• MASK-5 0020 AND ;

MASK-4 0010 AND ;

MASK-3 0008 AND ;

• MASK-2 0004 AND ;

MASK-I 0002 AND ;

MASK-0 0001 AND ;

(* T-X makes certain bit x is true regardless of current state)

: T-7 0080 OR ;

: T-6 0040 OR ;

: T-5 0020 OR ;

: T-4 0010 OR ;

: T-3 0008 OR ;

: T-2 0004 OR ;

: T-I 0002 OR ;

: T-0 0001 OR ;

(* F-X makes certain bit x is false regardless of current state)

: F-7 FF7F AND

: F-6 FFBF AND

: F-5 FFDF AND

: F-4 FFEF AND

: F-3 FFF7 AND

: F-2 FFFB AND

: F-I FFFD AND

: F-0 FFFE AND

(************************* INTERRUPT READ **)

(the following variables belong to the interrupt read routines)

B02D CONSTANT SCCR2

B02E CONSTANT SCSR2

B02F CONSTANT SCDR

SCI control register 2)

SCI status register 2)

the read / write register)

B7BF CONSTANT SCI INT LINK

VARIABLE WRITE POINTER

VARIABLE READ POINTER

VARIABLE BUFFER BOTTOM

VARIABLE BUFFER-TOP

VARIABLE BUFFER-LENGTH

VARIABLE CR FLAG

vARI_LE Q_
VARIABLE OK FLAG

SCI interrupt link)

variables for read buffer)

HEREBUFFERBOTTOM!
FEALLOT
HEREBUFFERTOP!

(WRITE-BUFFERwrites into textbuffer. It acceptscharactersuntil thebuffer is full.)
(Thisroutineis calledbythe interruptreadword)
(expectsvalueonstack)
: WRITE-BUFFER

WRITEPOINTER@
DUP13DUPBUFFERTOP@- IF BUFFERLENGTH@- THENREADPOINTER@- NOT

IF
C! WRITE POINTER @ I+ (write data into buffer and advance pointer)

DUP BUFFER TOP @ - IF BUFFER LENGTH @ - THEN WRITE POINTER ! (wrap if buffer end)

ELSE

DROP DROP (ignore data if buffer is full)

THEN

(READ-BUFFER reads from text buffer. If buffer is empty a zero is returned)

(It does not wait for the next available character if buffer is empty)

(If READ POINTER @ and WRITE POINTER @ are equal, the buffer is empty)
(returns-value on stack) -

: READ-BUFFER

READ POINTER @

DUP _ i+ DUP BUFFER TOP @ - IF BUFFER LENGTH @ - THEN) WRITE POINTER @ - NOT

IF

C@ READ POINTER @ I+ (read data from buffer and advance pointer)

DUP BUFFER TOP @ - IF BUFFER LENGTH @ - THEN READ POINTER ! (wrap if buffer end)

ELSE

DROP 0 (return a zero if buffer is empty)

THEN

: CLEAR-FL_C_S

0 OK FLAG !

0 CR-FLAG !

0 QM_FLAG !

(initialize flags)

INT-HECEIVE is an interrupt driven routine, called after receiving serial data

It scans the incoming datastream for the occurances of ' OK', ' ?', CRLF.

The flags QM FLAG, OK FLAG and CR FLAG indicate that the corresponding words were

detected. As the flags are internally also used for the detecting process, they must

be checked for a certain value: QMFLAG - 2
OK FLAG - 3

CR-FLAG - 2 are the values, when the string is detected

Zero values for the flags indicates-that the string has not occurred.

Any other value is not a valid flag.
Once a flag is set, it will stay set. The checking routine must reset the flags.

CODE INT-RECEIVE

(by the way: the following three m_dules are independend and can be

(copied for other applications. But dont forget to add the RTS then

(first we read the value from the interface and put it on the forth data stack

36 C, PUSHA * SECURE REGISTERS

37 C, PUSHB

3C C, PUSHX

86 C, 00 C, LDAA #0 * FORTH WANTS 16 BIT-> SO CLEAR MSB

F6 C, SCSR2 , LDAB SCSR2 * CLEAR INTERRUPT REQUEST

F6 C, SCDR , LDAB SCDR * GET DATA FROM INTERFACE

18 C, 09 C, DEY * PUT DATA ON FORTH DATA STACK

18 C, 09 C, DEY

18 C, ED C, 00 C, STD 0,Y

(then we check for all the flags

(assumes testvalue on FORTH data stack - BUT it will NOT remove it

F6 C, QM FLAG I+ , (qmtest idab qmflag * is QM_FLAG -0 ?
26 C, 0E-C, (bne qmltest

18 C, EC C, 00 C, (idd 0,y * copy value on data stack but dont remove it

Cl C, 20 C, (cmpb #' ' * is it the first testvalue ?

26 C, 29 C, (bne oktest * go to next test

C6C, 01C,
F7C, QM_FLAGi+ ,
20C, 22C,
C1C, 01C,
26C, IEC,

18 C, EC C, 00 C,

C1 C, 3F C,

26 C, 07 C,

C6 C, 02 C,

F7 C, QM_FLAG i+ ,
20 C, 10 C,

C1 C, 20 C,

26 C, 07 C,

C6 C, 01 C,

F7 C, QM_FLAG i+ ,

2O C, 05 C,

C6 C, 00 C,

F7 C, QM_FLAG i+ ,
F6 C, OK FLAG i+ ,

26 C, 0E C,

18 C, EC C, 00 C,

C1 C, 4F C,

26 C, 36 C,

C6 C, 01 C,

F7 C, OK FLAG I+ ,

20 C, 2F-C,

Cl C, 01 C,

26 C, 14 C,

18 C, EC C, 00 C,

C1 C, 4B C,

26 C, 07 C,

C6 C, 02 C,

F7 C, OK FLAG I+ ,

20 C, ID--C,

C1 C, 4F C,

26 C, 14 C,
20 C, 17 C,

C1 C, 02 C,

26 C, 13 C,

18 C, EC C, 00 C,

C1 C, 0D C,

26 C, 07 C,

C6 C, 03 C,

F7 C, OK FLAG I+ ,

20 C, 05-C,

C6 C, 00 C,

F7 C, OK FLAG I+ ,

F6 C, CR--FLAG i+ ,

26 C, 0E C,

18 C, EC C, 00 C,

Cl C, 0D C,

26 C, IE C,

C6 C, 01 C,

F7 C, CR FLAG i+ ,

20 C, 17-C,

C1 C, 01 C,

26 C, 13 C,

18 C, EC C, 00 C,

C1 C, 0A C,

26 C, 07 C,

C6 C, 02 C,

F7 C, CR FLAG I+ ,

20 C, 05-C,

C6 C, 00 C,

F7 C, CR FLAG i+ ,

01 C,

idab #i

stab qmflag
bra oktest

qmltest cmpb #I
bne oktest

!dd 0,y

cmpb #'?'

bne qmlnext
idab #2

stab qmf lag
bra oktest

c_nlnext cmpb # ' '
bne qmzero

idab #I

stab c_nflag
bra oktest

qmze ro idab #0

stab qmflag

oktest idab okflag
bne okltest

idd 0,y

_pb #'0'
bne crtest

idab #i

stab okflag

bra crtest

okltest cmpb #i
bne ok2test

idd 0, y

cnpb #'K'
bne oklnext

idab #2

stab okflag
bra crtest

oklnext cn_pb #'0'

bne okzero

bra crtest

ok2test cmpb #2

bne crtest

!dd 0,y

cnpb #'CR'
bne okzero

idab #3

stab okflag
bra crtest

okzero idab #0

stab okflag

crtest idab crflag

bne crltest

Idd 0,y

cmpb #$0D
bne exit

Idab #I

stab crflag

bra exit

crltest cmpb #i
bne exit

idd 0, y

cmpb #$0A

bne crzero

idab #2

stab crflag
bra exit

crzero idab #0

stab crflag

hop

* set QM FLAG to i

* go to next test

* is QM_FLAG -I ?

* copy value on data stack but dont remove it
* is it the second testvalue ?

* test for another space {leading spaces?}

* set QM_FLAG to 2

* go to next test

* set QM_FLAG to 1

* go to next test

* reset flag

* is OK FLAG -0 ?

* copy value on data stack but dont remove it
* is it the first testvalue ?

* go to next test

* set QM_FLAG to 1

* go to next test
* is OK FLAG -I ?

* copy value on data stack but dont remove it

* is it the second testvalue ?

* test for another space {leading spaces?}

* set QM FLAG to 2

* go to next test

* go to next test
* is OK FLAG -2 ?

* copy value on data stack but dont remove it

* is it the third testvalue ?

* go to next test
* set OK FLAG to 3

* go to next test

* reset flag

* is CR FLAG -0 ?

* copy value on data stack but dont remove it
* is it the first testvalue ?

* go to exit
* set QM FLAG to 1

* go to next test
* is CR FLAG -i ?

* copy value on data stack but dont remove it

* is it the first testvalue ?

* go to exit
* set CR FLAG to 2

* go to next test

* reset flag

* Jump address for 'exit'

(then we write it into the FIFO

(assumes data on the FORTH data stack.

FE C,

FC C,

C3 C,

IA C,

26 C,

B3 C,

IA C,

27 C,

36 C,

37 C,

18 C,

18 C,

18 C,

WRITE POINTER ,
WRITE-POINTER ,

00 C,-01 C,

B3 C, BUFFER TOP , (

03 C,

BUFFER LENGTH ,

B3 C, READ POINTER ,

12 C, (

(

(

EC C, 00 C, (

O8 C, (

08 C, (

idx writepoint

idd writepoint * load write pointer

addd #I * inc write pointer

cpd buffertop
bne label * no correction

subd buflen * subtract buffer length

(label cpd readpoint * is read pointer ahead?

beq full

psha * preserve address for later use

pshb

idd 0,y * get data from data stack

iny

iny

E7C,
33 C,

32 C,

FD C,

20 C,

18 C,

18 C,

18 C,

38 C,

33 C,

32 C,

3B C,

O0 C,

WRITE POINTER ,

07 C,

EC C, 00 C,

08 C,

08 C,

END-CODE

full

exit

stab

pulb

pula
std

bra

idd

Iny

iny

pulx

pulb

pula
rti

0,x

writepoint
exit

0,y

* store data {LSB only}

* restore incremented pointer

* take data, but dont use them

* restore registers

: KEY-BUF

BEGIN

READ POINTER @ WRITE POINTER @ - NOT

UNTIL

READ-BUFFER

CODE-SUB CLEAR-CC-MASKS

86 C, 00 C, (LDAA # 0)

O6 C, (TAP)

39 C, (RTS)
END-CODE

: INIT-BUFFER

BUFFER BOTTOM @ DUP WRITE POINTER ! READ POINTER !
BUFFER-TOP @ BUFFER BOTTOm @ - BUFFER LENGTH !

0 OK FLAG ! -

0 CR-FLAG !

0 __-FI._G !

: START-IRQ

SCI INT LINK C@ 7E - NOT

IF

7E SCI INT LINK EEC!

THEN (JMP code)

[' INT-RECEIVE @ >< FF AND] LITERAL DUF SCI INT LINK I+ C@ -

IF

DROP

ELSE

SCI INT LINK i+ EEC! (hi byte)
THEN

[' INT-RECEIVE @

IF

DROP

ELSE

SCI INT LINK 2+ EEC

THEN

CLEAR-CC-MASKS
INIT-BUFFER

SCCR2 C@ T-5 SCCR2 C!

: STOP-IRQ

SCCR2 C@ F-5 SCCR2 C!

FF AND] LITERAL DUP SCI INT LINK 2+ C@ -

(io byte)

(initialize buffer

(initialize flags

(initialize buffer

(enable interrupt)

(disable interrupt

(links may stay as they are)

************************** TIMER WORDS **)

the following are some generally useful words for timing things.)

the 68hcli has an on board counter/timer which runs off the)

system clock, we can use this timer for timing things like)

exposures, it is a 16 bit counter running at 2 mhz.

twait waits a given number of timer ticks)
HEX

CODE-SUB T-WAIT

18 C, EC C,

18 C, 08 C,

18 C, 08 C,

F3 C, B00E ,

IA C, B3 C,

24 C, FA C,

39 C,

END-CODE

00 C,

B00E ,

LDD 0,Y)
INY)

INY)

ADDD TCNT)

LOOP CPD TCNT)

BCC LOOP)

(M-WAITexpectsa numberonthe stack,it waitsthat manymilli-)
(seconds,thenu,_oer1870,whichyoumightexpectto be)
(2000,is adjusteddownwardsto accountfor theoverhead)
(involvedin gettingin andoutof the routine, it was)
(foundbyexperiment,andmayneedadjustment.)
: M-WAIT(W-) (WAITWMILLISECONDS)

0 DO74ET-WAITLOOP;

: MS-WAIT(D-) (WAITDMILLISECONDS,DISADOUBLE)
DUP0=IF DROPELSE
0 DOFFFFM-WAIT1M-WAITLOOPTHEN
DUP0- IF DROPELSEM-WAITTHEN;

***************************EEPROMWORDS************************)
Theforth dictionaryis storedin eeprommemory,but is run out)

of ram. At any time the user may use the following word "store")

to move the current dictionary to eeprom. This, in and of itself,)
is not all that useful. The next word, "RESTOR", will move the)

dictionary from eeprom to ram, and restore the state of the)

forth system to exactly where you were when you issued the store)
command. This is also of limited use, because next time you)

power up the system, RESTOR is not available in ram to to be)
called. Another word, ,ASTART!" defined a% the end of this file)

is used to tell the 6811 what word we would like executed on the)

next restart. "RESTOR" can be used as the autostart routine.)

Other words which include restore may also be defined as auto-)

start words, but the routine name is hard coded and this file)

would have to be edited. A detailed discussion of the whole)

autostart process can be found in the New MiCRos manuals.)

eprom represents where in eeprom to start storing the dictionary)
we want to reserve some space for autostart routines etc so we)

start at 256 bytes above the actual start of the eeprom or $1200)

1100 CONSTANT EPROM

1204 CONSTANT EEDICT-START

7600 CONSTANT DICT-START

: EE-! 2DUP ! BEGIN 2DUP @ - UNTIL DROP DROP ;

: EE-C! 2DUP C! BEGIN 2DUP C@ - UNTIL DROP DROP ;

CODE-SUBEEPROT

CE C, 55 C, 55 C,

86 C, AAC,

A7 C, 00 C,

CE C, 2A C, AA C,

86 C, 55 C,

A7 C, 00 C,

CE C, 55 C, 55 C,

86 C, A0 C,

A7 C, 00 C,

39 C,

END-CODE

CODE-SUB EEUNPROT

CE C, 55 C, 55 C,

86 C, AA C,

A7 C, 00 C,

CE C, 2A C, AA C,

86 C, 55 C,

A7 C, 00 C,

CE C, 55 C, 55 C,

86 C, 80 C,

A7 C, 00 C,

CE C, 55 C, 55 C,

86 C, AAC,

A7 C, 00 C,

CE C, 2A C, AA C,

86 C, 55 C,

A7 C, 00 C,

CE C, 55 C, 55 C,

86 C, 20 C,

A7 C, 00 C,

LDX #$5555 - IST EPROM ADDRESS)

LDAA #$AA - IST DATA PATTERN)

STAA 0,X - SEND AN AA TO $5555)

LDX #$2AAA - 2ND EPROM ADDRESS)

LDAA #$55 - 2ND DATA PATTERN)

STAA 0,X - SEND A 55 TO $2AAA)

LDX #$5555 - 3RD EPROM ADDRESS)

LDAA #$A0 - 3RD DATA PATTERN)

STAA 0,X - SEND AN A0 TO $5555)

RTS - RETURN)

LDX #$5555 - IST EPROM ADDRESS)

LDAA #$AA - IST DATA PATTERN)

STAA 0,X - SEND AN AA TO $5555)

LDX #$2AAA - 2ND EPROM ADDRESS)

LDAA #$55 - 2ND DATA PATTERN)

STAA 0,X - SEND A 55 TO $2AAA)

LDX #$5555 - 3RD EPROM ADDRESS)

LDAA #$80 - 3RD DATA PATTERN)

STAA 0,X - SEND AN 80 TO $5555)

LDX #$5555 - 4TH EPROM ADDRESS)

LDAA #$AA - 4TH DATA PATTERN)

STAA 0,X - SEND AN AA TO $5555)

LDX #$2AAA - 5TH EPROM ADDRESS)

LDAA #$55 - 5TH DATA PATTERN)

STAA 0,X - SEND A 55 TO $2AAA)

LDX #$5555 - 6TH EPROM ADDRESS)

LDAA #$20 - 6TH DATA PATTERN)

STAA 0,X - SEND A 20 TO $5555)

39C, (RTS - RETURN)
END-CODE

VARIABLEPROMLOC
VARIABLEPROMCOUNT
HEX
: STORE

0PROMCOUNT!
EEUNPROT
EPROMI00+ PROMLOC!
HEREPROMLOC@EE-!
PROMLOC@2+PROMLOC!
DICT-STARTPROMLOC@EE-!
PROMLOC@2+PROMLOC!
CR." STORINGDICTIONARY" CR
HEREDICT-STARTDO
I C@DUPPROMLOC@C@- IF DROP

ELSEPROMLOC@EE-C!PROMCOUNT@I+ PROMCOUNT!
THEN

PROMLOC@i+ PROMLOC!
LOOP
" STORINGFORTHUSERAREA" CR

846 DO
I C@PROMLOC@EE-C!
PROMLOC@I+ PROMLOC!
LOOP
EEPROT
CR." STORECOMPLETE" CR
" dictionarylength:" HERE7600- U.CR
" bytesupdated: " PROMCOUNT@U. CR

EEPROT ;

: RESTOR

(CR ." RESTORING THE DICTIONARY " CR)

1204 (start of dictionary in EEPROM)

7600 (start of dictionary in RAM)

1200 @ 1202 @ (fetch dictionary end and start)

(compute length)

CMOVE (move it to RAM)

(." RESTORING FORTH USER AREA " CR)

1200 @ fetch dictionary end address)

1202 @ fetch dictionary start address)

- compute length)

1204 + add eeprom dictionary offset)

which points us to the eeprom user area)
6 84 CMOVE move it into ram)

(CR ." RESTORE STATE COMPLETE " CR)

HEX

D200 CONSTANT MB0

D201 CONSTANT MBI

D202 CONSTANT MB2

D203 CONSTANT _B3

D204 CONSTANT _4

D205 CONSTANT MB5

D206 CONSTANT MB6

D207 CONSTANT MB7

D208 CONSTANT MB8

D209 CONSTANT MB9

D20A CONSTANT MBI0

D20B CONSTANT MBII

D20C CONSTANT MBI2

D20D CONSTANT MBI3

D20E CONSTANT MBI4

D20F CONSTANT MBI5

D218CONSTANTMB24
D219CONSTANTMB25
D21ACONSTANT MB26

D21D CONSTANT _29

CODE-SUB MB@

OF C,

CE C, B00A ,

A6 C, 00 C,

84 C, 80 C,

26 C, FA C,

18 C, EC C, 00 C,

18 C, 08 C,

18 C, 08 C,

8F C,

3C C,

A6 C, 00 C,

CE C, B00A ,

A6 C, 00 C,

84 C, 80 C,

27 C, FA C,

38 C,

A6 C, 00 C,

16 C,

4F C,

18 C, 09 C,

18 C, 09 C,

18 C, ED C, 00 C,

0E C,

39 C,

END-CODE

CODE-SUB MB !

OF C,

CE C, B00A ,
A6 C, 00 C,

84 C, 80 C,

26 C, FA C,
18 C, EC C, 00 C,

18 C, 08 C,

18 C, 08 C,

8F C,

18 C, EC C, 00 C,

18 C, 08 C,

18 C, 08 C,

E7 C, 00 C,

0E C,

39 C,

END-CODE

SEI

LDX PORTE -

LDAA 0,X -
ANDA #$80 -

BNE #$FA -

LDD 0, Y -

INY

INY

XGDX

PSNX

LDAA 0,X -

LDX PORTE -

LDAA 0,X -

ANDA #$80 -

BEQ #$FA -

PULX

LDAA 0,X -

TAB

CLRA

DEY

DEY

STD 0, Y -
CLI

RTS

SEI

LDX PORTE -

LDAA 0,X -

ANDA #$80 -

BNE #$FA -

LDD 0,Y -

INY

INY

XGDX

LDD 0,Y -

INY

INY

STAB 0,X -
CLI

RTS

do not disturb {disable int. })

PUT ADDRESS OF PORT E INTO X)

READ PORT E)

MASK OUT ALL BUT BIT 7)

IF NOT 0 GO BACK TO LDAA)

GET ADDRESS OF MAILBOX)

VALUE ON THE STACK IS 16 BITS)

SO INCREMENT THE SP TWICE)

PUT ADDRESS INTO INDEX REG X)

SAVE ADDRESS FOR FUTURE USE)

READ MAILBOX, IGNORE THE VALUE)

GET ADDRESS OF PORT E AGAIN)

READ PORT E)

MASK OUT ALL BUT BIT 7)

IF NOT 1 GO BACK TO LDAA)

GET THE MAILBOX ADDRESS AGAIN)

READ THE MAILBOX AGAIN)

TRANSFER A TO B TO ORIENT FOR STACK)

CLEAR ACCUMULATOR A)

VALUE TO BE PUT ON THE STACK IS 16)

BITS SO DECREMENT THE SP TWICE)

STORE THE DATA ON THE STACK)

interrupts enabled
RETURN)

do not disturb {disable int.})

PUT ADDRESS OF PORT E INTO X)
READ PORT E)

MASK OUT ALL BUT BIT 7)

IF NOT 0 GO BACK TO LDAA)
GET ADDRESS OF THE MAILBOX)

VALUE ON THE STACK IS 16 BITS)

SO INCREMENT THE SP TWICE)

PUT THE ADDRESS INTO INDEX REG X)

GET DATA TO PUT INTO THE MAILBOX)

VALUE ON THE STACK IS 16 BITS)

SO INCREMENT THE SP TWICE)

WRITE DATA TO THE MAILBOX)

interrupts enabled

RETURN)

(************************** status LBDs *************************)

(LIGHT THE LED'S ONE AT A TIME INDICATING LIFE)

D700 CONSTANT LIGHTS

20 CONSTANT MAXCOUNT

80 CONSTANT MAXVAL

VARIABLE LCOUNT

VARIABLE LIGHTVAL

: INITLEDS

0 LIGHTS C !

0 LCOUNT !

1 LIGHTVA C! ;

: HEARTBEAT

LIGHTVAL C@

DUP LIGHTS C!

LCOUNT @ DUP MAXCOUNT -

IF DROP 0 LCOUNT !

DUP MAXVAL

IF DROP 1 LIGHTVAL C!

ELSE 2 * LIGHTVAL C!

THEN
ELSE i+ LCOUNT ! DROP

THEN ;

Settingtheaddressof the ATDVMEinterface
Definitionsof the switchesareasfollows:

1 2 3 4 5 6 7 8 9 I0 ii 12

MSB LSB 1

ADDRESS I

1

1

DRAM ARRAY SIZE I

ADDRESS SPACE

NO-START OPTION

first two digits in address of DRAM

size of DRAM 00 - 4M, 01 - 8M

10 - 16M, Ii - 32M

"off" - 24 bit, "on" - 32 bit

"off" - do not start

Switches 1 through 8 are used for the first two digits

in the address of the VME board. This address represents

the address of the first location in the DRAM interface.

The controller portion of the board is accessed i,r_ediatly

above the DRAM array.

Switches 9 and i0 determine how much memory space the

board will occupy. Presumably this is how much RAM actually

exists on the board, but that is not necessary.

Switch ii which address space the board will respond

to and hence which digits in the 32 bit address are set

according to the switches.

Switch 12 is used as a "go / no-go" option. If the
board is reset with this bit set "off" , the on-board

microcontroller will initialize the bus interface, but will

not run the camera control loop. It will instead look to the

serial interface for FORTH con_nands.

HEX

(many of the registers in the bus uinterface chip are initialized the

(same no matter what configuration.

: INIT-PTVSI

0 NB0 MB! 0 MBI MB! 0 MB2 MB!

0 MB3 MB! 0 MB4 MB! 0 MB5 MB!

0 _6 MB! 0 MB7 MB! 0 MB8 MB!

0 M_9 MB! 0 MBI0 MB! 0 MBII MB!

0 MBI2 MB! 0 MBI3 MB! 0 MBI4 MB!

0 NBI5 MB! 0 D210 _! 0 D211 MB!
0 D212 MB! 0 D213 _! 0 D214 MB!

0 D215 MB! 9 D216 MB! 34 D217 MB!

5 D21B MB! ;

(The bits on the DIPSWITCH and on PORTE are inverted, so we

(always end up either inverting them or using them in a way that

(may seem backwards. Keep that in mind.

D600 CONSTANT DIPSWITCH

B00A CONSTANT PORTE

(Temporary storage locations for what will ultimately be written

(into registers 25 and 29 of the PT-VSI bus interface chip.

(Temporary storage required because we cannot read back from

(the PT-VSI and we may need to set bits in these registers

(as we initialize the bus interface.

VARIABLE T25

VARIABLE T29

(report impossible addressing combination to the user
: ADDR-ERROR

BEGIN
00LIGHTSC[
400M-WAIT
FFLIGHTSC!
400 M-WAIT

FALSE

UNTIL ;

forever ...

turn lights on
wait 1 second

turn lights off
wait 1 second

leave false

go do it again

(setup bus interface for 24 bit address space
: SETUP-24

FF MB24 MB!

DIPSWITCH C@ FF XOR

DUP 4 / DUP T25 C! T29 C!

T29 C@ F0 AND T29 C!

40 * MB26 MB{

PORTE C@ FF XOR

0C AND

DUP 0 - IF

T25 C@ T-4 T25 C!

THEN

DUP 4 - IF

T25 C@ T-5 T25 C!

T29 C@ 0 OR T29 C!

THEN

DUP 8 - IF

ADDR-ERROR
THEN

C = IF

ADDR-ERROR

THEN

T25 C@ MB25 MB!

T29 C@ MB29 MB!

90 D21F MB! ;

(fetch address bits and invert them

(right shift by two store termp values

(zero bottom four bits of T29

(left shift addr by 6 and store in reg 26

fetch control bits and invert them

mask off memory size bits

if 4 meg ...

... set bit 4 in T25

if 8 meg ...
... set bit 5 in T25

... set bit 1 in T29

if 16 meg ...

... that's a fatal error in 24 bit space

if 32 meg ..

... that's also fatal.

store the temp values to mailboxes 25, 29

call it 24 bit mode and enable DR/_4

(setup bus interface for 32 bit address space
: SETUP-32

DIPSWITCH C@ FF XOR (fetch address bits and invert them

DUP 4 / MB24 _! (right shift by two and store

40 * DUP T25 C! T29 C!

T29 C@ F0 AND T29 C!

0 MB26 MB!

(left shift by 6 and store temp values
(zero bottom four bits of T29

(zero MB26

PORTE C@ FF XOR
0C AND

DUP 0 = IF

T25 C@ T-4 T25 C!

THEN

DUP 4 - IF

T25 C@ T-5 T25 C!

T29 C@ 01 OR T29 C!

THEN

DUP 8 - IF

T25 C@ T-6 T25 C!

T29 C@ 03 OR T29 C!

THEN

C - IF

T25 C_ T-7 T25 C!

T29 C8 07 OR T29 C!
THEN

T25 C@ MB25 MB!

T29 C@ _B29 MB!

80 D21F MB! ;

(fetch control bits and invert them

(mask off memory size bits

(if 4 Meg ...

(... set bit 4 in T25

(if 8 Meg ...

(... set bit 5 in T25

(... set bit 0 in T29

(if 16 Meg ...
(... set bit6 in T25

(... set bits 0 and 1 in T29

(if 32 Meg ..
(... set bit 7 in T25

(... set bits 0,1,2 in T29

(store the temp values to mailboxes 25, 29

(call it 32 bit mode and enable DRAM

(GO FOR IT will be checked later to

(determine if we should enter command loop

VARIABLE GO FOR IT

: SETUP

INIT-PTVSI

PORTE C@ 01 AND

IF FALSE GO FOR IT ! (if PORTE bit 0 - "off" then we will not start

ELSETRUEGOFORIT !
THEN
PORTEC@02AND

IF SETUP-24
ELSESETUP-32
THEN

COD21EMB!;

if PORTEbit 0- "on" thenwewill

checkaddressspacebit
if PORTEbit 1 i "off" then24bit space
if PORTEbit 1- "on" then32bit space
enabledramarrayselectpin

****************************** COMMUNICATION***)
the generalcommandprocessfor this cardis asfollows:
all commandsareprefixedwith their parameters.
the 6811waits for dataor commandsbypollingMB0
MB0is usedasthe commandstatusregisterfor masterslavecommunication
bit definitions :

76543210
JlJlqLI+ CRDY command ready

Plltli+ MSDF master slave data flag

Ill f1+ BSY busy

lilt+

Ill÷

II+

I+

+

MBI and MB2 are the MSDR master/slave data register

Date may be of two types. Either parameter data to be placed on

the stack for later use by a command. Or command number data, a number

representing a command the master wishes executed.

Both types of data is assumed to be 16 bit with the upper portion

in MB2 and the lower portion in MBI.

MB3 contains the count of characters recleved from the camera

available for the host.

the count is updated after every transfer

MB4 is used for the text transfer from the VME board to the host

MB5 is used as the ERROR STATUS REGISTER.

the local slave sets bits in this register

when it recognizes errors

errors returned include :

76543210

l Ill i J l+...... CMD-ERR : command number out of range

ill fIf+ STACK-ERR : stack underflow condition

I fir i+........ LOST-DATA : buffer overflow during text transfer to host

iill_

II14

if+

+............. QM-ERR : error flag caused by a question mark

Please note : It is requested that the host cpu not write to the

error status register. A command is provided for

resetting the register to 0. If that command fails

the board is not functioning properly and as a last
reseort a software reset is recommended.

MB6 is used as the status word for slave master communication.

The master sets the SMDR flag to indicate it is ready to accept data from slave.

The slave provides a character in MB4 and the count of available characters in MB3.
It then resets the SMDR.

76543210

llillll+ SMDR

lililf+

tlltl÷

llll_

Ill+

If+

: slave master data request

]+

4

(BSY

- BSY

(ROY

: RDY

sets the busy flag in MB0)
4 MB0 MB! ;

clears MB0)

0 MB0 MB_ ;

(MSDF?

: MSDF?

(CRDY?

: CRDY?

(SMDR?

: SMDR?

(S_RDY
: SMRDY

checks the MSDF flag in MB0 to see if data has been placed in MBI)

MB0 MB@ 2 = ;

checks the CRDY flag in MB0 to see if a conm_nd is ready to be executed

MB0 MB@ 1 - ;

is issued by the host when it is ready to accept text)

MB6 MB@ 1 AND 1 = ;

is the ready flag for the slave to master transfer

0 MB6 MB! ;

* COMMANDS TO SET THE ERROR STATUS REGISTER BITS)

CMD -ERR

HEX

: C_3-ERR

sets the command range error flag

indicating that the VME board thinks that the

conm_and number passed with the last CRDY flag was invalid

MB5 MB@ 01 OR MB5 MB! ;

(STACK-ERR sets the stack underflow condition flag
(indicating that the VME board has noticed that it does not

(have adequate data on the stack to perform a requested

(operation. NOTE : the VME board does not attempt to
(execute the command, and leaves the stack untouched.

HEX

: STACK-ERR MB5 MB@ 02 OR MB5 MB! ;

(QM-ERR

(

(

HEX

: QM-ERR

(LOST-DATA

(

(
HEX

: LOST-DATA

sets the question mark error flag

indicating that the camera has returned a question mark and

does not recognize a command that has been issued)

MB5 MB@ 80 0R MB5 MB! ;

sets a flag indicating that an overflow occurred during text transfer

from slave to host. If this flag is set, the host was not fast enough

to get all data from slave

MB5 MB@ 40 OR MB5 MB! ;

(BUFFER-COUNT gets the number of characters stored in the buffer)

(Leaves count value on stack)

: BUFFER-COUNT

WRITE POINTER @ READ POINTER @ -

DUP-0< IF BUFFER LENGTH @ + THEN

DUP BUFFER LENGTH @ 1 - = IF LOST-DATA THEN

(SERVE-HOST checks if host is ready to accept data. If it is ready, the data are

(transferred via MB4 and the count of the remaining data is stored in MB3

: SERVE-HOST

SMDR?

IF

BUFFER-COUNT

DUP 0- NOT

IF

READ-BUFFER MB4 MB !

1 -

THEN

MB3 _!

SMRDY

ELSE

check if host is ready for data

if data are available in buffer

store data in mailbox

decrement BUFFER-COUNT

store count in mailbox

issue the ready flag

BUFFER-COUNT
MB3_!

THEN;
(storecountin mailbox

: WAIT-MSDF
BEGIN
SERVE-MOST
MSDF?
UNTIL;

(****************************C05_gdqDEXECUTION**************************************)
(DOCMDexecutetheco_m_m_dcorrespondingto thenumber)
(retrievedfromthehost in themailbox)
CODE-SUBDOCMD

18C, EC C,

18 C, 08 C,

18 C, 08 C,

05 C,

C3 C, 7000 ,

8F C,

EC C, O0 C,

BD C, ATO4 ,

39 C,

END-CODE

00 C, LDD 0,Y

INY

INY

LSLD

ADDD CTAB

XGDX

LDD 0,X

JSR ATO4

RTS

get the command number)

the value on the stack is 16 bits)

so inCRement the sp twice)

multiply the number by two)

add the command table start address)

put the address into the index reg)
load the cfa into the d accumulator)

Jump to the command table routine)
return)

HEX

(WAIT-CR-LF WAITS UNTIL A CARRIAGE RETURN LINEFEED PAIR HAS BEEN RECEIVED)

: WAIT-CR-LF

BEGIN

CR FLAG @ 2 - DUP IF 0 CR FLAG ! THEN

UNTIL

(HEX

: WAIT-OK (wait until an " 'ok' cr if " has been received)

BEGIN

OK FLAG @ 3 - DUP IF 0 OK FLAG ! THEN (check if OK occurred

QM-FLAG @ 2 - OR - (or the QM flag was set

SEI_VE-HOST

UNTIL

WAIT-CR-LF

****** functions called by the host to operate this board *************)

AG-INIT initialize the "address generator" PLD which controls

the DMA writes of camera data into the dual ported buffer

Calling this function performs no useful function other

than assuring that the next image data will begin at address 0

HEX

D400 CONSTANT AGI

D401 CONSTANT AG2

: AG-INIT 0 AG2 C! 3 AG2 C! ;

(SPCON-RESET resets the " serial to parallel converter pld

(which identifies the bursts of pixel clocks on the AIS style

(interface cards, performs no useful function whatsoever on

(the ATDVMEI parallel data interface cards
HEX

D500 CONSTANT SPCON

D800 CONSTANT ISPCON

: SPCON-RESET
: $PCON-INIT

FFISPCONC! ;
BSYSPCONC! RDY;

(I/OPortroutines:
(Theboardcontainsaparallel I/Oport accessibleto thehost
(througha set of conm_ands.
(The6811'sbuilt in I/O portPORTAis used
HEX
B000CONSTANTPORTA
(IO-READreadthe 3 inputpinsontheuserio port, bits 0-2)
: IO-_

PORTAC@07ANDMB2MB!
WAIT-OK

(IO-WRITEwrite the 4 outputpinsof theuserio port, bits 3-7
(expectsthevalueto beonthe stack
: IO-WRITE

DEPTH1 <
IF STACK-ERR
ELSE78ANDPORTAC ! WAIT-OK

THEN ;

(IO-PULSE pulse pin i of the user io port for x milliseconds)

(expects the number of milliseconds to be on the stack)

: IO-PULSE

DEPTH 1 <

IF STACK-ERR

ELSE 08 PORTA C! M-WAIT 00 PORTA C! WAIT-OK

THEN ;

(CAM-MALT

(

(

: CAM-HALT ;

stops the command loop
it is only a dummy word as the code is detected before we get here

the dummy word is needed to have an entry in the CMD table

(ERROR-RESET resets the error flags
: ERROR-RESET 0 MB5 MB! ;

: FLUSH-BUFFER

STOP-IRQ

MB5 _B@ F-6 MB5 MB_

START-IRQ ;

(empties the buffer)

(reset any old LOST-DATA bit)

: NOT-DEFINED C_D-ERR ;

(****** functions called by the host to operate the camera *************)

HEX

: CAM-RESTART

" CXX " 0D EMIT

FFF M-WAIT

FLUSH-BUFFER
" CIN " 0D EMIT

WAIT-OK

: SET-PARAM (set the value of a camera control parameter)

DEPTH 2 <

IF STACK-ERR

ELSE

U. U. ." FP! " 0D EMIT

WAIT-OK

THEN ;

: CISC-ON (begin continuous clear option)
" SCT" 0D EMIT

WAIT-OK

: CISC-OFF (terminate continuous clear option)

" SCF"0D EMIT

WAIT-OK

: GAIN-LO (set camera gain to low)
" SGL" 0D EMIT

WAIT-OK

: GAIN-HI (set camera gain to high)
" SGH" 0D EMIT

WAIT-OK

: OFFSET! (write value to CCD signal offset DAC)

DEPTH 1 <

IF STACK-ERR

ELSE

U. ." SCO" 0D EMIT

WAIT-OK

THEN ;

: SHADE (produce test pattern)
" IAS" 0D EMIT

WAIT-OK

: OSHUT (open the shutter)
" SSO" 0D EMIT

WAIT-OK

: CSNUT (close the shutter)

" SSC" 0D EMIT

WAIT-OK

: PIX-BIN (shift N plxels into the summing well or output)

DEPTH 1 <

IF STACK-ERR

ELSE

U. ." LPB" 0D EMIT

WAIT-OK

THEN ;

: ROW-BIN (shift N rows into the serial register)

DEPTH 1 <

IF STACK-ERR

E LSE

U. ." LRB" 0D EMIT

WAIT-OK

THEN ;

: PIX-DISCARD (discard N pixels off the CCD)
DEPTH 1 <

IF STACK-ERR

ELSE

U. ." LPC" 0D EMIT

WAIT-OK

THEN ;

: ROW-DISCARD (discard N rows off the CCD)

DEPTH 1 <

IF STACK-ERR

ELSE

U. ." LRC" 0D EMIT

WAIT-OK

THEN ;

: PIX-READ (read N pixels off the CCD)

DEPTH 1 <

IF STACK-ERR

ELSE
U. ." LPR"0DEMIT
WAIT-OK

THEN;

: ROW-READ(readNrowsoff the CCD
DEPTH1 <
IF STACK-ERR
ELSE

U. ." LRR"0DEMIT
WAIT-OK

THEN;

: CAM-WRITE

DEPTH 1 <

IF STACK-ERR

ELSE

U. U. ." LCW" 0D EMIT

WAIT-OK

THEN ;

: CLEAR

: READ

: BIAS

: XPOSE

: DARK

clear the ccd)

" ICL" 0D EMIT

WAIT-OK

read out the ccd)

" IRD" 0D EMIT

WAIT-OK

close, clear, read)

" IAB" 0D EMIT
WAIT-OK

close, clear, integrate)

" IIL" 0D EMIT

WAIT-OK

CLOSE, CLEAR, INTEGRATE, READ)

" IAD" 0D EMIT

WAIT-OK

: OBS CLOSE, CLEAR, OPEN, INTEGRATE, CLOSE, READ

" IAL" 0D EMIT

WAIT-OK

: TEMP0@ (produce formatted string reporting temperature of CCD)
" STB" 0D EMIT

WAIT-OK

: TEMPI@ (produce formatted string reporting temperature of CASE)
" STC" 0D EMIT

WAIT-OK

: FORMAT? (produce formatted table of camera parameters)

" FF?" 0D EMIT

WAIT-OK

: SET-FORMAT (initialize camera with current format parameters)

" FSF" 0D EMIT

WAIT-OK

(ANTI-BLOOM these are to be replaced by a parameter)

: ANTI-BLOOM-OFF

" SBF" 0D EMIT

WAIT-OK

: ANTI-BLOOM-ON

" SBT"0DEMIT
WAIT-OK

: INTEGRATE-CCD(stopclearing,integratechargeontheCCD)
" IID" 0DEMIT

WAIT-OK

: CAM-FAST (set camera speed to fast)
" SSF" 0D EMIT

WAIT-OK

: CAM-SLOW (set camera speed to slow)

" SSS" 0D EMIT

WAIT-OK

: FRAME-TRANSFER

" SFT" 0D EMIT

WAIT-OK

: FULL-FRAME

" SFF" 0D EMIT

WAIT-OK

: SET-TEMP

DEPTH 1 <

IF STACK-ERR

ELSE

U. ." ST! " 0D EMIT

WAIT-OK

THEN ;

VARIABLE TEMP POINTER

: SEND-STRING- (get a character from the vme master and send to the camera)

DEPTH 1 <

IF STACK-ERR

ELSE

WRITE POINTER @ TEMP POINTER ! (store old pointer)

EMIT

BEGIN

WRITE POINTER @ TEMP POINTER @ - NOT (wait until pointer advances)

UNTIL-

THEN ;

(BUILD

7000 CONSTANT CTAB

BUILD A JUMP TABLE OF COMMANDS IN RAM)

: BUILD

(functions related to initialization and operation of this board)

[' AG-INIT] LITERAL CFA CTAB ! (CO_@_D OFFSET 0X00)

[' SPCON-INIT] LITERAL CFA CTAB 2 + ! (CO_R4AND OFFSET 0X01)

[' SPCON-RESET] LITERAL CFA CTAB 4 + ! (CO_4MAND OFFSET 0X02)

[' IO-READ] LITERAL CFA CTAB

[' IO-WRITE] LITERAL CFA CTAB

[' IO-PULSE] LITERAL CFA CTAB

[' CAM-HALT] LITERAL CFA CTAB

[' ERROR-RESET] LITERAL CFA CTAB

[' FLUSH-BUFFER] LITERAL CFA CTAB

[' NOT-DEFINeD] LITERAL CFA CTAB

[' NOT-DEFINED] LITERAL CFA CTAB

[' NOT-DEFINED] LITERAL CFA CTAB

[' NOT-DEFINED] LITERAL CFA CTAB

6 + ! (CO_ND OFFSET 0x03)

8 + ! (COMMAND OFFSET 0x04)

A + ! (C_ OFFSET 0x05)

C + ! (COMMAND OFFSET 0X06)

E + ! (CO_MAND OFFSET 0X07)

I0 + ! (C05_4AND OFFSET 0X08)

12 + ! (CO_R4AND not defined)

14 + ! (CO_4AND not defined)

16 + ! (COMMAND not defined)

18 + ! (CO_4MANT) not defined)

NOT-DEFINED] LITERALCFACTABIA+
NOT-DEFINED] LITERALCFACTABIC +
NOT-DEFINED] LITERALCFACTABIE +
NOT-DEFINED] LITERALCFACTAB20+
NOT-DEFINED] LITERALCFACTAB22+
NOT-DEFINED] LITERALCFACTAB 24 +

NOT-DEFINED] LITERAL CFA CTAB 26 +

NOT-DEFINED] LITERAL CFA CTAB 28 +

NOT-DEFINED] LITERAL CFA CTAB 2A +

NOT-DEFINED] LITERAL CFA CTAB 2C +

NOT-DEFINED] LITERAL CFA CTAB 2E +

NOT-DEFINED] LITERAL CFA CTAB 30 +

NOT-DEFINED] LITERAL CFA CTAB 32 +

NOT-DEFINED] LITERAL CFA CTAB 34 +

NOT-DEFINED] LITERAL CFA CTAB 36 +

NOT-DEFINED] LITERAL CFA CTAB 38 +

NOT-DEFINED] LITERAL CFA CTAB 3A +

NOT-DEFINED] LITERAL CFA CTAB 3C +

NOT-DEFINED] LITERAL CFA CTAB 3E +

COMMAND not defined

COMMAND not defined

CON_MAND not defined

CO_4AND not defined

COMMAND not defined

CON_MAND not defined

COMMAND not defined

COW,HAND not defined

COMMAND not defined

COMMAND not defined

COMMAND not defined

COMMAND not defined

COMMAND not defined

COMMAND not defined

C05_4AND not defined

CON_ not defined

COMIwghND not defined

COMMAND not defined

COMMAND not defined

(functions related to camera operation)
[CAM-RESTART] LITERAL CFA CTAB 40 +

[SET-PARAM]

[CISC-ON]

[CISC-OFF]

[GAIN-HI]

[GAIN-LO]

[OFFSET _]

[SHADE]

[OSHUT]

[CSHUT]

[PIX-BIN]

[ROW-BIN]

[PIX-DISCARD]

[ROW-DISCARD]

[P IX-READ]

[ROW-READ]

[CAM-WRITE]

[CLEAR]

[READ]

[BIAS]

[XPOSE]

[DARK]

[OBS]

[SEND-STRING]

[TEMPO@]
{ TEMPI@]
[FORMAT?]

LITERAL

LITERAL

LITERAL

LITERAL

LITERAL

LITERAL

LITERAL

LITERAL

LITERAL

LITERAL

LITERAL

LITERAL

LITERAL

LITERAL
LITERAL

LITERAL

LITERAL

LITERAL

LITERAL

LITERAL

LITERAL

LITERAL

LITERAL

LITERAL

LITERAL

LITERAL

[SET-FORMAT] LITERAL

[ANTI-BLOOM-OFF] LITERAL

[ANTI-BLOOM-ON] LITERAL

[INTEGRATE-CCD] LITERAL

[CAM-FAST] LITERAL

[CAM-SLOW] LITERAL

[NOT-DEFINED] LITERAL

[NOT-DEFINED] LITERAL

[SET-TEMP] LITERAL

[FRAME-TRANSFER] LITERAL

[FULL-FRAME] LITERAL

[NOT-DEFINED] LITERAL

[NOT-DEFINED] LITERAL

(..... > if you extend this list,

47 CONSTANT MAX CMD

CFA CTAB 42 +

CFA CTAB 44 +

CFA CTAB 46 +

CFA CTAB 48 +

CFA CTAB 4A +

CFA CTAB 4C +

CFA CTAB 4E +

CFA CTAB 50 +

CFA CTAB 52 +

CFA CTAB 54 +

CFA CTAB 56 +

CFA CTAB 58 +

CFA CTAB 5A +

CFA CTAB 5C +
CFA CTAB 5E +

CFA CTAB 60 +

CFA CTAB 62 +

CFA CTAB 64 +

CFA CTAB 66 +

CFA CTAB 68 +

CFA CTAB 6A +

CFA CTAB 6C +

CFA CTAB 6E +

CFA CTAB 70 +

CFA CTAB 72 +

CFA CTAB 74 +

CFA CTAB 76 +

CFA CTAB 78 +

CFA CTAB 7A +

CFA CTAB 7C +

CFA CTAB 7E +

CFA CTAB 80 +

CFA CTAB 82 +

CFA CTAB 84 +

CFA CTAB 86 +

CFA CTAB 88 +

CFA CTAB 8A +

CFA CTAB 8C +

CFA CTAB 8E +

CO_MAND OFFSET 0x20

COMMAND OFFSET 0x21

CO_9_AND OFFSET 0x22

COMMAND OFFSET 0x23

COMMAND OFFSET 0x24

CO_94AND OFFSET 0x25

COMMAND OFFSET 0X26

COMMAND OFFSET 0x27

COMMAND OFFSET 0x28

CO_5_ND OFFSET 0x29

CO_%ND OFFSET 0x2A

COMMAND OFFSET 0x2B

COMMAND OFFSET 0x2C

COMMAND OFFSET 0x2D

CO_R4AND OFFSET 0x2E
COMMAND OFFSET Ox2F

COMMAND OFFSET 0x30

COMMAND OFFSET 0x31

COMMAND OFFSET 0x32

COMMAND OFFSET 0x33

COMMAND OFFSET 0x34

COMMAND OFFSET 0x35

CO_R4AND OFFSET 0x36

COMMAND OFFSET 0X37

COMMAND OFFSET 0X38

COMMAND OFFSET 0X39

COMMAND OFFSET 0X3A

CO_4AND OFFSET 0X3B

COM_MAND OFFSET 0X3C

COMMAND OFFSET 0X3D

COMMAND OFFSET 0X3E

COMMAND OFFSET 0X3F

COMMAND OFFSET 0X40

COMMAND OFFSET 0X41

COMMAND OFFSET 0X42

COM_MAND OFFSET 0X43

COMMAND OFFSET 0X44

COM_MAND OFFSET 0X45

CO_4AND not defined

COMMAND not defined

be sure to update the MAX_CMD in the following line

POLL-CMD

POLL-CMD

wait for a command in mailbox 0

if nothing light an led

if MSDF put it on the stack

if CRDY fetch command number and place on the stack

repeat until a command is found)

also checks if host is willing to accept return data

it will place the count of the available characters in MB3 and the
value of the next data in MB4

MB0 is polled until a command is found to be ready,

if MSDF, the data is fetched from MBI and placed on the stack

When CRDY is true, the command is fetched from MBI, placed on the stack,

and the loop is exited, returning to RUN which will interpret the command.

It is assumed that the parameters needed for the proper execution of the command

will be found on the stack, if not, we will Crash. For now, no error checking

is performed to be sure that the command number found is legit. This safety
function will be added later.

: POLL-CMD
BEGIN

MSDF?IF
MB2MB@100*
MBIMB@+
RDY 0

ELSE

CRDY?

THEN

SERVE-HOST

UNTIL

BSY ;

IF

MBI FB@

DUP MAX CMD > (

IF

DROP (

CMD -ERR (

BSY (

100 M-WAIT

RDY 0 (

ELSE

1

THEN

ELSE

HEARTBEAT 0

THEN

if data...

... fetch the top half

... add in the bottom half, leave on stack

... and go ready, but don't leave loop
if no data ...

if there is a command ...

check if cmdexceeds range

drop CMD if not valid

issue error flag

satisfy that host waits for the BSY flag

(wait a while

pretend to be ready and stay in loop

(if valid, keep it and leave loop to execute

(if no data or command

(... do LEDs, stay in loop

HEX

0C CONSTANT STOP (the value of CAM-HALT)

HEX

: MAIN

1204 7600 1200 @ 1202 @ - CMOVE

1200 @ 1202 @ - 1204 + 6 84 CMOVE

SETUP

BUILD

INITLEDS

DECIMAL

GO FOR IT @

IF START-IRQ

BEGIN

POLL-CMD

DUP STOP -

IF TRUE

ELSE CLEAR-FLAGS

DUP 0 SWAP -

LIGHTS C !

DOCMD

QM FLAG @ 2 -

iF QM-ERR

THEN

RDY

FALSE

THEN

UNTIL

STOP-IRQ

THEN ;

(restore dictionary

(restore FORTH user area
initialize bus interface

build the command table

initialize the lights

decimal mode please

is it OK to start ?

if so, start serial receive interrupt

enter main command interpreter loop
wait for a co,and

check to see if it's cam-halt

if so, leave TRUE to exit loop at UNTIL

clear OK QM and CR flags {Just to be safe}

(show command number on LED panel

(execute command

(did we get a question mark from the camera ?

(if so, QMFLAG is set, so terminate with error flag

(command is done, we are ready

(leave FALSE so we stay in loop at UNTIL

(repeat until told to halt

(stop serial receive interupt routine

ASTART! store the autostart sequence and the cfa

of the autostart word in ext. eprom)

to use a different word on startup, Just replace the word restor

in the following definition with the name of whatever you would

like the 6811 to do on power up.

HEX

400 CONSTANT ASTART

: ASTART !

EEUNPROT

A44A DUP ASTART EE-!

[' MAIN] LITERAL CFA

DICT-START -

EEDICT-START +

DUP ASTART 2+ EE-!

EEPROT

CR ." AUTOSTART SEQUENCE STORED " CR ;

Appendix D: 'C' Language Interface Source Code

/*

I*

I_-

I*

I*

I*

I*

ATDcam.c

Subroutines for Advanced Technologies VME interface.

P Doherty, HJ Meyer, A Gale

i, Rev. 2.0
f_

t*

I*

l*

/*

1.

I*

/*

Iw

/*

/*

4/2/92

lots of little changes, some major ones to the

IRAF interface code.

added lots more comments.

Rev. 1.0 1120/92

finally extracted this from cam.c

provides support for all ATD VME functions
including all necessary to run either the

ATC5 cameras or the AIS or AIS2

/*

*/

*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/

*/
*/

#include <stdio.h>

#include <errno.h>

#include <fcntl.h>

#include <sys/file.h>

#include <sys/mman.h>

#include <sys/types.h>

/* #include <ctype.h> */
/* #include <string.h> */

/*
#include "cam.h"

#include "camhdw.h"

*/

#include "ATDcamera.h"

#ifdef BIT3

#define BTS MODEL 466

#include "btsio.h"

#define TRUE 1

#define FALSE 0

char *map_mem ();

char *map_bit3();

#define PAGE SHFT 16

#define PAGE--SIZE (i << PAGE SHFT)

#define PAGE_MASK (PAGE_SHFT-- I)

#define MEMPAGE 0x1000

#define MAILPAGE 0x1200

int gBit3fd; /* bit3 file descriptor */

struct bts reg *gNodeIO; /* pointer to the bit3 I/O registers */

unsigned short gMemPage - MEMPAGE;

unsigned short gMailPage - MAILPAGE;
#endif

char *camera base;

/* extern st_uct system_params camera_params; */

I* PTVSI mailboxes */

extern unsigned char *mailbox0;

extern unsigned char *mailboxl;

extern unsigned char *mailbox2;

e×tern unsigned char *mailbox3;

extern unsigned char *mailbox4;

extern unsigned char *mailbox5;

extern unsigned char *mailbox6;

extern unsigned char *mailbox7;

extern unsigned char *mailboxS;

extern unsigned char *mailbox9;

extern unsigned char *mailboxlO;

extern unsigned char *mailboxll;

extern unsigned char *mailboxl2;

extern unsigned char *mailboxl3;

extern unsigned char *mailboxl4;

extern unsigned char *mailboxl5;

f, ** */

'* VME interface oriented commands */

'* These commands are used to operate on the VME interface */

'* locally. No action is taken by the camera controller. */

r, ** ,/

/* reset is used to reset the VME interface board. */

/* It is good practice to do so as your application */

/* first initializes. It assures that the interface */

/* is in a known state. */

/* camera base is the base address of the command */

/* portion of the VME interface. */

/* This function is identical for ATDVME boards and */

/* VME200A boards. */

void reset ()

(

#ifdef BIT3

gNodeIO->rempage = MAILPAGE;
#endif

*((char *)camera base + 0x3d) = CMD_RESET;

usleep (3000000)[

return;

}

/* halt

/*
/*
/*
/*
/*
/*

tells the on board microcontroller to cease */

interpretation of commands from the VME master and */

to begin interpreting FORTH commands coming in */

through the serial port on the camera connector. */

This function is useful only for test purposes, and */

will lead to confusion if called while connected */

to the camera. */

void halt ()

(
issue command (CMD_HALT) ;

return;

}

/* ag_init is used to reset the "address generator" PLD */

/* This PLD controls the DRAM write of camera data. */

/* Sets the start address for subsequent camera data */

/* to the first location on the VME interface board. */

/* This function should be called before an image */

/* acquisition command llke dark or obs. If a */

/* series of images is to acquired into DRAM before */

/* reading the data, then ag_init should be called */

/* only before the first acquisition. */

void ag_init()

(
issue command (C_D AG INIT);

return;

}

/* spcon_init is used to initilize the serial to parallel */

/* convertor control PLD an VME200A type boards with */

/* serial data interface. Performs no useful or */

/* harmful function if called on a ATDVME interface. */

/* The value passed is determined by the type and rate */

/* of the pixel data clock signal. The value used */

/* here, 7E, is for 40 kHz readouts. For a comlete */

/* explanation of how this works, see the VME200a */

/* theory of operation. */

void spcon_init ()
(
pass_char_param (0x3f) ;

issue command (C__SPCON_INIT) ;
return;

}

/* spcon_reset is used to reset the serial to parallel */
/* convertor control PLD an VME200A type boards with */

/* serial data interface. Performs no useful or */

/* harmful function if called on a ATDVME interface. */

void spcon reset()

(
issue command (CMD_SPCON_RESET) ;
return;

}

/* The ATDvme interface includes an I/O port whose function */
/* reamins uncommitted. Acces to this port is granted to */

/* the user through the following set of fuctions. */

/*

/* io read is used to read the TTL data present on the */

/* - input bits of the user I/O port. */

/* Returns the value found. */

char io read ()

(
unsigned char value;

#ifdef BIT3

gNodeIO->rem_page - MAILPAGE;
#endif

issue command (C_D_IORD) ;

wait _md done ();

value - *mailboxl;

return (value) ;

)

/* io write is used to write to the output bits of the

/* user I/O port.

void io write (value)

char value;

{
pass_charparam (value);

issue command (C_ IOWR);
wait _md done ();

return;

}

*/
*/

/* io pulse is used to pulse one of the bits on the user */

/* I/O port for a given number of deci-seconds */
/* This is useful for shutter drivers or filter wheels */

/* This function will be changed to accept bit */

/* selection and millisecond timings. */

void io_pulse (decisecs)

unsigned short decisecs;

{
pass_short_param (decisecs);

issue command (CMD_IOPLS);

wait _md done ();

return;

}

/, ww.wwwwwwwwwwww.w**wwwww.wwwwww**wwwwwwww*wwwwwwwwww**w* */

/* */
/* Camera Oriented Commands */

/* */

/* cam restart issues a series of cow,hand strings to the */

/* camera controller. These operations perform a */

/* warm restart of the camera controller. This is */

/* purely a software reset. No hardware reset of the */

/* camera controller is available through the VME */

/* interface board. */

void cam restart ()

{
issue_command (CMD_CAM_RESTART) ;

wait cmd done () ;

read-cam-buffer () ;

return;

}

/* set_param is used to set a camera parameter. Parameters */

/* are static variables associated with camera */

/* operation and CCD readout. Parameters are described */

/* in detail elsewhere. */

void set_param (offset, value)

unsigned short offset;

unsigned short value;

{
pass_short_param (offset);

pass short_param (value);

cam command (CMD SET PARAM);

return;

}

/* ATD cameras are capable of performing continuous clear */

/* operations on the CCD while the camera is idle. The */

/* following two functions are used to turn this on and off.*/

void cisc on ()

(
cam co_nand (CMD_CISCON) ;
return;

}

void cisc off ()

{
cam command (CMDCISCOFF);

return;

)

/* anti bloom on is used to enable clock recombination */

/* -anti-blooming. After this function called, CRAB */

/* will be performed during exposures. */

/* THIS FUNCTION IS NOT FULLY IMPLE_NTED IN THE ATC5 */

/* CAMERAS AND WILL PRODUCE UNDESIRABLE EFFECTS. */

void anti bloom on()

{
camcommand (C_D_ANTI BLOOM_0N) ;

return;

)

/* anti bloom off this function is used to disable the */

/* -clock-recombinatlon anti-bloomlng mode of operation */

/* CRAB will not be performed during exposures after */

/* this function is called. */

void anti_bloom_off ()

{
cam_command (CND_ANTI_BLOOM_OFF) ;

return;

)

/* The ATC5 and AIS2 cameras are capable of running at two */

/* different speeds. In the ATC5 camera, the hardware that */

/* is required may or may not have been purchased. If not, */

/* setting the camera to low speed will produce invalid */

/* data. The AIS camera does not support this option at all.*/

void cam fast ()

{
cam_command (CND_CAM_FAST) ;

return;

}

void cam slow()

{
cam command(C_ CAM SLOW);

return;

}

/* The gain of all the ATD cameras may be adjusted by the */

/* user. */

/* The ATC5 cameras have a gain switch allowing the */

/* camera to be operated in two gain modes. The exact */

/* value of the gain in either mode is determined by the */

/* adjustments made to the camera during integration and */

/* test. */

/* The AIS cameras have a dual slope integrator based */

/* architecture in the analog processing, and the camera */

/* gain may be adjusted nearly continuously by changing the */

/* dual slope integrators integration time. Three standard */

/* gain modes are provided here. */

void ATCS_gain_hl ()

{
cam command (CMD_GAIN_HI) ;

return;

}

void ATC5_gain_lo ()

{
cam command (CMD_GAIN_LO) ;

return;

}

void AIS_gain io ()
{
}

void AIS_gain_mid()

{
}

void AIS_gain_hi ()
{
)

/* cam offset sets the camera's bias offset to a new value */

/* - cam offset requires one parameter: the new value to */

/* be Written to the offset DAC in the camera head. */

/* This value may range from 0 to 255. */

/* This function operates on ATC5 cameras and on AIS2 */

/* cameras, but performs no function on an AIS. */

void cam offset(value)

char-value;

(
pass_char_param (value);

cam command (CMD_OFFSET) ;

return;

}

/* CCD_temp() is used to query the temperature of the CCD. */

/* Inthe ATC5, the CCD is coooled by a thermo- */

/* electrtric cooler located in the vacuun chamber.*/

/* In the AIS cameras, the CCD is cooled by a tank */

/* of liquid nitrogen located in the dewar. */

void CCD_temp ()

{

cam_command (CMD_TEMP0) ;

return;

)

/* case_temp() is used to query the temperature of the back */

/* side of the CCD chamber, which is heated by the */

/* thermoelectric cooler. The temperature is */

/* returned as aformatted ASCII text string. */

void case temp()

(

cam_co_mand(CMD_TEMPl);

return;

)

/* set_temp() is used to set the desried operating point for */

/* the CCD. A signed 8 bit value is expected. For */

/* practical purposes, the temperature of an ATC5 */

/* camera will not stabilize more than approx. 65 */

/* degrees below ambiant. An AIS, with a nitrogen */

/* dewar, should reach temperatures below -80 deg C.*/

void temp_set(value)

char value;

(
pass_schar_param(value);
cam command(CrY9 SET TEMP);

return;

)

/* oshut opens the shutter on the camera. The camera */

/* controller will pause for ODELAY milliseconds */

/* after and then return. */

void oshut ()

{
cam command (CMD_OSHUT) ;

return;

)

/* cshut

/*
/*

closes the shutter on the camera. The camera */

controller will pause for CDELAY milliseconds */

after and then return. */

void cshut ()

(
cam command (CMD_CSHUT) ;

return;

/* pix bin is used to request that the camera controller bin */

/* a number of pixels into the CCD surmning well. One */

/* parameter is required: npix, the number of pixels */

/* to bin. Simply put, npix CCD serial shift operations */

/* are performed. */

void pix bin (npix)

unsigned short npix;

{

pass short_param (npix);
cam command (CMD PIX BIN);

return;

}

/* row bin is used to request that the camera controller bin */

/* - a number of rows into the CCD serial register. One */

/* parameter is required: nrows, the number of rows to */

/* bin. Simply put, nrows CCD parallel shift operations */

/* are performed. */

void row bin (nrows)

unsigned short nrows;

{

pass short_param (nrows);
cam command (CMD ROW BIN);

return;

}

/* pix_discard is used to request that the camera controller */
/* discard a number of pixels in the CCD serial register. */

/* One parameter is required: npix, the number of pixels */

/* to discard. */

void pix discard (npix)

unsigned short npix;

{

pass short param (npix);
cam _ommand (CMD PIX DISCARD);

return;

}

/* row discard is used to request that the camera controller */

/* - discard a number of rows in the CCD parallel register. */

/* One parameter is required: nrows, the number of rows */

/* to discard. */

void row discard (nrows)

unsigned short nrows;

{

pass short_param (nrows);
cam command (CMD ROW DISCARD);

return;

)

/* pix read is used to request that the camera controller */

/* read a number of pixels in the CCD serial register. */

/* One parameter is required: npix, the number of pixels */

/* to read. */

void pix read (nplx)

unslgned short npix;

(

pass short_param (npix);
cam command (CMD PIX READ);

return;

}

/* row read is used to request that the camera controller

/* - read a number of rows in the CCD parallel register.

/* One parameter is required: nrows, the number of rows
/* to read.

void row read (nrows)

unsigned short nrows;

(

pass_short_param (nrows);
cam command (CMD ROW READ);

return;

}

*/
*/
*/

*/

/* cam write is used to request that the camera controller */

/* write a value to a sequencer address. Such addresses */

/* might be the camera control latches or any stored */

/* parameters. This is an extremely low level operation, */

/* and should only be performed if one knows exactly what */

/* one is doing. This cor_nand may be eliminated in the */
/* near future. */

void cam write (address,datum)

unsigned short address;

unsigned short datum;

(

pass_short_param (address) ;

pass_short_param (datum) ;

cam_command (CMD_CAM_WRITE) ;

return;

}

/* get format is used to get an unformatted list of the
/* current settings ofthe system parameters.

*/
*/

void get_format ()
(

cam_command (CMD_FORMAT) ;
return;

}

/* set format is used to initialize the camera controller */

/* sequencer with the current format params. When */

/* parameters are set with set_param, the sequencer */

/* is NOT updated. A subsequent set_format command is */

/* required to assure that the sequencer will use the */

/* updated format. */

void set format()
{

cam command(CMD SET FORMAT);

return;

)

/* clear is used to request that the camera controller

/* clear all charge off the CCD. The CCD is actually

/* cleared NUM CLEARS times.

void clear()

{

cam command (CMD_CLEAR) ;
return;

}

/* integrate dark is used in a low level control mode to */

/* integrate dark current on the CCD device. */

/* The shutter */

void Integrate_dark()
{

cam command(CNP INTEGRATE CCD);

*/
*/
*/

return;

/* integrate light is used in a low level control mode to

/* int_rate light on the CCD device. */

/* The shutter */

*/

void integrate light()
{

cam command(CMDINTEGRATE_CCD);
return;

)

/* shade

/*

/*

/*

/*

/*

/*

/*

/*

/*

is used to request that the camera controller */

generate the test data stream. The amount of data and */

its form will depend on the current status of the */

format parameters. READ PAR rows will be produced */

with READ SER plxels in-each row. Each pixel in the */
row will have the same value. The value will increment */

by one each row. The first row will have the value of */

ORG PAR. Multiple shade patterns may be produced. The */

number of shades produced is equal to the current value */

of the NUM IMAGES parameter. */

void shade ()

{

ag_init ();

cam conmand (CMD_SHADE) ;
return;

)

/* readout

/*

/*

/*

/*

/*

/*

/*

/*

is used to req_/est that the camera controller */

read the image off the CCD based on the current */

format parameters. The CCD will actually be read */
NUM IMAGES times. */

In This example we call ag init() to point the data */

pointer to the start of the DRAM array, but this is not */

necessary, and would be undesirable if you desired to */

"stack" several images in the DRAM before fetching the */

data. */

void readout ()

{

#ifdef AIS

spcon_reset ();

spcon_init ();
#endi f

ag_init () ;

cam command (CMD_READ) ;
return;

}

/* bias

/*

/*

/*

/*

/*

/*

/*

/*

is used to generate in image of the CCD with no */

charge on it. The shutter is closed, the CCD is */

cleared NUM CLEARS times, and the image is read out. */

This con_le_e cycle is performed NUM IMAGES times. */

In this example we call ag_init() to-point the data */

pointer to the start of the DRAM array, but this is not */

necessary, and would be undesirable if you desired to */

"stack" several images in the DRAM before fetching the */
data. */

void bias ()

{

#ifdef AIS

spcon_reset ();

spcon_init ();
#endi f

ag init ();

cam command (CMD_BIAS) ;

return;

}

/* expose */

/* this function is redundant to the OBS command below, */

/*

/*
/*
/*

/*
/*
/*

and exists only for some obsolete application code */

which expects it. */

In this example we call ag_init() to point the data */

pointer to the start of the DRAM array, but this is not */

necessary, and would be undesirable if you desired to */

"stack" several images in the DRAM before fetching the */
data. */

void expose (exptime)

unsigned long exptime;

(

ag_init () ;

set_exposure time (exptime) ;

cam command TCMD_OBS);
return;

}

/* dark this function is called to generate an image of the CCD */
/*

/*

/*

/*

/*

/*

/*

/*

/*

void dark (exptime)

unsigned long exptime;

(

set_exposure_time (exptime) ;

#ifdef AIS

spcon_reset ();

spcon_init ();
#endl f

ag_init () ;

cam command (CMD DARK) ;
return;

)

with dark current. The shuter is closed, the CCD is */

cleared, dark currwent is allowed to build for exptime */

milliseconds, and the chip is read out. This entire */

cycle is repeated NUM IMAGES times. */

In this example we ca_l ag init() to point the data */

pointer to the start of the DRAM array, but this is not */

necessary, and would be undesirable if you desired to */

"stack" several images in the DRAM before fetching the */
data. */

/* obs

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

void obs (exptlme)

unsigned long exptime;

{

set_exposuretlme (exptime) ;

#ifdef AIS

spcon_reset () ;

spcon_init ();
#endi f

ag init ();

cam command (CMD_OBS) ;
return;

)

this command is used to generate an object exposure */

image. The shutter is closed, the CCD is cleared, the */

shutter is opened, light is accurm/lated for exptime */

milliseconds, the shutter is closed, and the image is */

read out. This complete cycle is repeated NUM_IMAGES */
times. */

In this example we call ag_init () to point the data */

pointer to the start of the DRAM array, but this is not */

necessary, and would be undesirable if you desired to */

"stack" several images in the DRAM before fetching the */
data. */

void send cam char (achar)

char achar;

(

pass_char_param (achar) ;

cam_command (CMD SEND_STRING) ;
return;

}

/* Text transfer commands */

/* send file is used to send an ASCII text file to the */

/* -camera. The file is assumed to consist of FORTH */

void send file (filename)

char _filename;

{

FILE *theFile;

int compiling;

char thisChar;

flush buffer();

if ((theFile _ fopen (filename, "r")) >-0)

(
thisChar = 0x00; /* we haven't got any characters yet ...

compiling _ 0 ; /* ... and we're not compiling yet

while(thisChar !- EOF)

{
/* fscanf(theFile,"%c",&thisChar);

*/

/* empty the serial text buffer on the board */

thisChar - getc(theFile);

if (thisChar -- 0x0a)

thisChar _ 0x0d;

if (thisChar !- EOF)
send cam char (thisChar);

if (thisChar -- ':')

compiling - 1 ;

if (thisChar -- ';')

compiling - 0 ;

if(thisChar -- 0x0d)

{

if (compiling)

wait CR LF ();

else

{

wait_OK();
wait CR LF();

}

}

)

)

else

*/
*/

/* read a char from the file

/* if its a line feed... */

/* ... make it a carriage return */

/* if not end of file ... */

/* ... send it to the camera */

/* if the char is a colon ... */

/* ... then we're compiling. */

/* if the char is a semi-colon ... */

/* ... we're not compiling anymore. */

/* if the char is a carriage return ... */

/* ... and we're compiling ... */

/* ... Just wait for CR LF */

/* ... and we're not compiling ... */

/* ... wait for an 'OK' ... */

/* ... and then a CR LF sequence. */

fprintf (stderr, "Error opening %s", filename);

return;

}

/* send string is used to send an arbitrary string to

/* --the camera. This is useful in a variety of ways.

/* Any command may be issued this way. A carriage

/* return is appended to the end of the string.

/* The camera should respond with an 'OK', but this

/* function does not wait for it.

void send_string (theString)

char *theString;

{
char aChar;

aChar - 0x00;

while (aChar !- 0x0D)

{

aChar - *theString++;

if (aChar !- 0x00)

*/
*/
*/

*/
*/
*/

{

send cam char(aChar);

}

else

{

aChar - 0x0D;

send cam char(aChar);

)

}

return;

}

/* wait OK is used to wait until an 'OK' response has been */

/* -received from the camera */

void wait OK ()

{

int done;

char theChar;

done m 0;

while (done-0)

(

theChar a get_a_char();
#ifdef VERBOSE

fprintf (stderr,"%c",theChar);

#endif

if (theChar -- '0')

(

theChar - get a char();

#ifdef VERBOSE

fprintf (stderr,"%c",theChar);
#endif

if (theChar =- 'K')

done - 1 ;

}

}

)

/* wait CR LF is used to wait until an carriage return

/* line feed pair has been recieved from the camera

void wait CR LF ()

(

int done;

char theChar;

done _ 0;
while (done-O)

{

theChar - get a_char();
#ifdef VERBOSE

fprintf (stderr,"%c",theChar);
#endif

if (theChar -- 0x0d)

{

theChar _ get_a char();
#ifdef VERBOSE

fprintf (stderr,"%c",theChar);
#endif

if (theChar _- 0x0a)

done - 1 ;

}

)

)

*/

*/

/. ** w/

/* read buffer functions */

void flush buffer ()

(
issue_command (CMD_FLUSH_BUFFER) ;

wait cmd done () ;

retu rn;

}

/* read cam buffer is used to fetch all the characters in */

/* the serial input buret. This is useful for */

/* monitoring the camera's responses to some commands. */

void read cam buffer()

{
unsigned char count;

unsigned char thechar;

#ifdef BIT3

gNodeIO->rem_page s MAILPAGE;

#endif

count - *mailbox3;

while (count !- 0)

(
thechar - get a char () ;

if (thechar !-0xff)

#ifdef VERBOSE

fprintf (stderr,"%c",thechar);

#endif

count - *mailbox3;

)
return;

)

/* get a char is used to fetch a character from the serial */

/* input buffer. This function includes a time out. */

char get a char()

(
unsigned char myChar;

int i;

#ifdef BIT3

gNodeIO->rem_page = MAILPAGE;

#endif

mailbox6 - SMDR ; / tell 6811 we're ready for serial data */

i-0;

while ((*mailbox6 -- SMDR) && (i < 10000010))

i++;

if (i<i0000000) {

myChar - *mailbox4;

}
else {

printf("%s/n", "Timeout while reading from controller.");

myChar - 0xff;

)
return(myChar);

/* parameter transfer functions */

/* pass_short_param is used to pass function parameters */

/* to the on board microcontroller before issuing */

/* commands. This function is used to pass parameters */

/* of the short integer type. */

void pass_short_param (theshort)

unsigned short theshort;

{
unsigned char low byte;

unsigned char high_byte;

#ifde f BIT3

gNodeIO->rem_page - MAILPAGE;
#endi f

wait cmd done () ;

/* Load the high byte of the datum into mailbox 2*/

high_byte - (unsigned char) (theshort >> 8);

*mailbox2 - high_byte;

/* Load the low byte of the datum into mailbox I*/

low_byte - (unsigned char)(theshort & 0x00ff);

*mailboxl - low_byte;

set msdf();

wait cmd done () ;

return;

)

/* pass_char param
/* on board microcontroller before issuing co_Tnands.

/* This function is used to pass parameters of the

/* char type. All parameters are unsigned.

void pass_char_param (thechar)

unsigned char thechar;

(

#ifdef BIT3

gNodeIO->rem_page - MAILPAGE;
#endi f

wait cmd done();

/* clear the high byte in mailbox 2*/

*mailbox2 _ 0;

*mailboxl - thechar;

set msdf();

wait cmd done() ;

return;

)

is used to pass function parameters to the
*/

*/

*/

*/

/* pass s char_param is used to pass function parameters */
/* to the on board microcontroller before issuing */

/* cor_nands. */

/* This function is used to pass parameters of the */

/* char type. All parameters are signed. */

void pass s char_param (thechar)

char thechar;

(

#ifdef BIT3

gNodeIO->rem_page - MAILPAGE;
#endif

wait cmd done();

/* clear the high byte in mailbox 2*/

*mailbox2 - 0;

*mailboxl - thechar;

set msdf() ;

wait cmd done ();

return;

)

/* cam command issues con_nand, waits for completion, checks */

/* - for command errors, and echoes buffer contents. */

void cam command(cmd)

char-cmd;

{

char status;

wait cmd done() ;

issuecommand(cmd);
waitcmddone();
checkerror(cmd);
read_ambuffer();
return;
}

/* q_cam command issues command, waits for completion, checks */
/* for con_nand errors, and flushes serial input buffer. */

void q_cam_conmmund (cmd)
char cmd;

{

char status;

wait cmd done ();

issue command(cmd) ;

wait _md done ();

check error (cmd) ;

flush-buffer ();

return;

)

/* issue command waits for the board to complete execution*/

/* of the last function called then writes the new */

/* cor_mand number to mailboxl and sets the command */

/* ready flag in mailbox0. This function does not wait */
/* until the camera and interface are done with the */

/* execution of the co,mand. */

void issue con_nand (cmd)

char cmd;

{

char status;

#ifdef BIT3

gNodeIO->rem_page _ MAILPAGE;
#endif

wait cmd done ();

*mailboxl - cmd;

*mailbox0 - CRDY;

return;

}

/* flag manipulation functions */

/* set msdf sets the master to slave data full bit in */

/* - the status register. */

void set msdf()
(

#ifdef BIT3

gNodeIO->rem_page - MAILPAGE;
#endif

*mailbox0 - MSDF;

return;

)

/* wait cmddone waits until the 6811 has completed the

/* last function called. When done, then 6811 will

/* clear mailbox 0 */

void wait cmd done()

(

char status;

#Ifdef BITS

*/

*/

gNodeIO->rem_page- MAILPAGE;
#endif

status- *mailbox0;

while (status !- 0)

{

status - *mailbox0;

}

return;

)

/* *ww*ww*e*_*_w_wwwwww_wwwww*ww_wwwww*w_e**e**ww**w***www W/

/* error handling function */

void check error(cn_)

char cmd;

(

if (*mailbox5 =- 0)

return;

else

{

printf("\nError in co,_nand %x, error code %x\n", cmd, *mailbox5);

issue_command(CMDERRORRESET);
wait cmd done();

if (;mailbox5 !- 0)

printf("%skn", "Fatal error: can't reset error flag. Propose reset.");

}

return;

)

/* W*WW*_WWWWWWW_WW*WWWW_W**WWW*WWWWw**W*W**WWWWW*WWWW**W** e/

/* Higher level commands built from the conTnand set */

/* and provided as exar_les. Used internally by ATD test */

/* software.

/* cam Init is used in quickview to initialize the camera */

/* - parameter set with the current values in a struct */

/* called cparams. */

/*

/* void caminit (cparam_)

struct system params *cparams;

{

unsigned short tempval;

static int first time - i;

I*

I*

I*

I*

/*

/* /* Write camera system parameters */

/* set_param(CCDSER, cparams->sdim);

/* set param(CCDSER, cparams->sdim);

/* set_param(CCDPAR, cparams->pdim);

/* set_param(BINSER, cparams->sbin);

/* set_param(BINPAR, cparams->pbin);

/* set_param(ORGSER, cparams->sorg + cparams->spre);

/* set param(ORGPAR, cparams->porg + cparams->ppre);

/* set_param(READSER, cparams->srdlen);

/* set param(READPAR, cparams->prdlen);
/*

/* tempval - cparams->sdlm -

/* (cparams->sorg + (cparauns->sbln * cparams->srdlen))

/* + cparams->spost ;

/*

/* if (tempval < 0x7fff)

/* set_param(POSTSER, tempval);

/* else

/* set_param(POSTSER, 0);
/*

/* tempval - cparams->pdim -

/* (cparams->porg + (cparams->pbin * cparams->prdlen))

/* + cparams->ppost ;

/*

/* if (tempval < 0x7fff)

/* set param(POSTPAR, tempval);

/* else

/* set_param (POSTSER, 0) ;

/*

/* set_param (PRESER, 0) ;

/* set param (UNDERSER, 0) ;

/* set param (OVERSER, 0) ;

/* set_param (OVERPAR, 0) ;

/* set_param (PAR/DELAY, cparams->pdelay) ;
/*

/* set param (ODELAY, cparams->odelay) ;

/* set param (CDELAY, cparams->cdelay) ;

/*

/* if (cparams->cisc)

/* cisc_on ();
/* else

/* cisc off();

/*

/* set_param (EXPL, 200) ;

/* set param (EXPH, 0) ;

/* set_param (NUMC_, 2) ;

/* set param (NUMIMAGES, I) ;

/* set param (IM_WAIT_LO, 50) ;

/* set param (IM_WAIT_HI, 0) ;
/*

/* set_param (GSPFLAG, 0) ;

/* set param(GSP CAP WIN, 0) ;

/* set_param(GSP CAP X,0);

/* set param(GSP CAP Y,0);

/* set_param(GSP DIS WIN, 0);
/*

/*

/*

/* set format ();

/*#ifdef AIS

/* send file ("AISinit") ;

/ *#endi f--AIS

/*

/* read cam buffer ();

/*

/* return;

/* }

/*

*/

void set_exposure_time (exptime)
unsigned long exptime;

{

unsigned short lotime;

unsigned short hltime;

lotime- (unsigned short) exptime;

set_param(EXPL, lotime) ;

hitime - (unsigned short) (exptime >> 16);

set param(EXPH, hitime) ;

return;

}

/* rexpose accepts two parameters the exposure time and the

/* number of exposures desired.

void rexpose (exptime, count)

unsigned long exptime;

int count;

{

int i ;

set_exposure_time (exptime) ;
for (i-0; i<count; i++)

{

ag init ();

cam_command (CMD_OBS) ;

)

return;

}

*/

*/

void rbias(count)

int count;

(

int i;

for (i-0; i<count; i++)

bias ();

return;

)

void robs(exptime, count)

unsigned long exptime;

int count;

(

int i;

for(i-0;i<count;i++)

obs(exptime);

return;

}

/* AIS cameras have additional flexibility not available in the ATC5. */

/* Clock voltages and clock sequence are programable. */

/* The following functions are available to initialize these to the */

/* desired values. This would normally only be done as a maintenance */

/* function or in the integration of an new CCD imager. */

/* It is assumed that the user has retained the file naming convention */

/* wherein timing information is stored in a file named AIStiming and */

/* clock voltage settings are retained in a file named AISvolts. */

/* If you change the name of the files, you've got to change this code */
/* */

#1fdef AIS

/* AIS init volts send the file that sets the clock rail voltages */

void AIS_init_volts ()

{

send file ("AISvolts") ;

return;

}

/* AISinit_timing send the file that sets the timing parameters

void AIS_init_timing ()

(

send file ("AIStiming") ;

return;

}

*/

#endif AIS

/W *WWWWWWWW*WWWW**WWWW*WWW*WWW***WW**WWW****W*******WWWWW */

/* dummy routines Just to keep the rest of quickview happy */

void rdark(exptime, count)

unsigned long exptime;

char count;

(

}

void trig_arm(cmd)
char cmd;

(

}

void focus(exptime)

unsigned long exptime;

{

}

void send stop()

voidnexpose()
{
}

voidtrig_disarm()
{
}

voidcamwait()
{
}

voidslavewait()
{
}

/* test functions, used for low level debugging at ATD only. */

void get_mbs()
{

unsigned char i;

#ifdef BIT3

gNodeIO->rem_page - MAILPAGE;
#endif

fprintf(stderr," mallboxl = %x

fprintf(stderr," mailbox0 - %x

fprintf(stderr," mailbox2 - %x

fprintf(stderr," mailbox3 - %x

fprintf(stderr," mallbox4 = %x

fprintf(stderr," mailbox5 - %x

fprintf(stderr," mailbox6 - %x

fprintf(stderr," mailbox7 = %x

fprintf(stderr," mallbox8 - %x

fprintf(stderr," mailbox9 = %x

fprintf(stderr," mailboxl0 - %x

fprintf(stderr," mailboxll = %x

fprintf(stderr," mailboxl2 = %x

fprintf(stderr," mailboxl3 - %x

)

/* open_devices.c
/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

void *ram base;

in% ram_pbase;

int ram_len;

char *camera base;

int cam_pbase;

int cam_fen;

\n" *mailbox0);

in" *mailboxl);

\n" *mailbox2);

\n" *mailbox3);

\n" *mailbox4);

\n" *mailboxS);

\n" *mailbox6);

\n" *mallbox7);

\n" *mailbox8);

\n" *mailbox9);

\n" *mailboxl0);
\n" *mailboxll);

\n" *mailboxl2);

\n" *mallboxl3);

A 'C' language program that open's the necessary device drivers
for communicating with either an ATDVI_I VMEbus interface or a VME200a

interface. Used when controlling ATC5 or AIS cameras under UNIX.

Used at Advanced Technologies in Sun workstations with or without the

Bit3 Sbus to VMEbus adaptor

History:

revision 1.0 1/22/92 ped

extracted as necessary from ccd.c

thoroughly untested

/* pointer to n_naped image buffer ram

/* the physical starting address of external memory

/* the length, in bytes, of external memory

/* pointer to mmapped controller

/* the physical starting address of controller

/* the length, in bytes, of the controller interface

unsigned char *mailbox0;

unsigned char *mailboxl;

unsigned char *mailbox2;

unsigned char *mailbox3;

unsigned char *mailbox4;

*/
*/
*/

*/

*/
*/

*/
*/
*/

*/
*/

*/
*/
*/

*/
*/

*/
*/
*/

*/

unsigned char *mailbox5

unsigned char *mailbox6

unsigned char *mailbox7

unsigned char *mailbox8

unsigned char *mailbox9

unsigned char *mailboxl0

unsigned char *mailboxll

unsigned char *mailboxl2

unsigned char *mailboxl3

unsigned char *mailboxl4

unsigned char *mailboxl5

char *map_VME_devices ();

void ATD init devices();

void ATD init devices ()

{

/* NOTE : hard coded addresses for the VMEbus interface board ! */

cam_pbase - 0x10800000; /* physical address of controller portion */

cam len _ 0x200; /* length, in bytes, of controller portion */

ram_phase - 0xl0000000; /* physical address of DRAM portion */

ram fen - 0xS00000; /* length of DRAM portion */

#ifdef BIT3

init bit3 ();
#endif BIT3

/* Map the controller device into user address space */

#ifdef BIT3

camera base - (char *) map_bit3 ();
#else BIT3-

camera base _ (char *) map VME devices (cam_pbase, cam fen);
#endif BIT3

/* assign values to the mailbox pointers */

mailbox0 - (unsigned char *) camera base + I;

mailboxl - (unsigned char *) camera-base + 3;

mailbox2 - (unsigned char *) camera-base + 5;

mailbox3 - (unsigned char *) camera-base + 7;

mailbox4 - (unsigned char *) camera-base + 9;

mailbox5 - (unsigned char *) camera-base + ii;

mailbox6 - (unsigned char *) camera-base + 13;

mailbox7 - (unsigned char *) camera-base + 15;

mailbox8 - (unsigned char *) camera-base + 17;

mailbox9 - (unsigned char *) camera-base + 19;

mailboxl0 - (unsigned char *) camera-base + 21;

mailboxll - (unsigned char *) camera-base + 23;

mailboxl2 - (unsigned char *) camera-base + 25;

mailboxl3 - (unsigned char *) camera-base + 27;
mailboxl4 - (unsigned char *) camera--base + 29;

mailboxl5 - (unsigned char *) camera-base + 31;

/* Map DRAM memory device into user address space */

#ifdef BIT3

ram base - camera_base;
#else BIT3

ram base - (char *) map VME devices (ram_pbase, ram_len);
#endif BIT3

}

/* map VME devices mmaps devices into virtual address space

/*

/* accepts two parameters :

/* addr physical address of VME device

/* len length, in bytes, of VME device

/*

/* called when no bit3 Sbus to VME adaptor is used

/*

char *map_VME_devices (addr, len)

int addr;

int len;

*/
*/
*/
*/

*/
*/
*/

*/

{
int fd;

char *base;

char *filename _ "/dev/vme32d32";

/* filename - "/dev/vme16d32"; */

/* filename _ "/dev/vme24d32"; */

/* open the device : If successful mmap the device */

if ((fd- open (filename, O_RDWR)) >-0)

(

base _ (char *) _nap ((char *)0, fen, PROT_READIPROT_WRITE, MAP SHARED,

fd, addr) ;

#ifdef VERBOSE

fprintf (stderr, "Device _nap returned %x\n", (Int) base) ;

#endi f

}
else /* if unable to open device */

(
fprlntf (stderr,"Error opening device: %s %s %s %d",

"device:", filename, "error- ", errno);

*base- (char) -i;

}

return (base);

)

#ifdef BIT3

/w ** */

I* *I
/* init bit3 */

/* _naps the bit3 devices I/O Node registers, and initializes */

/* both the sbus and vme bit3 adapter cards. */

/* Returns true if the board initializes correctly, false if */

/* there are any errors. */

/* */

int init blt3 ()

{
char *slot - "/dev/bts0";

/* Open the bit3 device driver */

if ((gBit3fd - open (slot, O_RD_)) < 0)

{
perror ("cannot open bit3 device");

exit (gBit3fd) ;

)

/* fix up the bit3 board io registers */

gNodeIO - (struct bts_reg *) mmap (NULL, getpagesize (),

PROT WRITE I PROT READ, MAP SHARED, gBit3fd, BT_NODE);

if (gNodeIO -- (struct bts_reg *)-I)

(
perror ("could not mmap BT_NODE of bit3 board");

exit (-i) ;

)

/* inlt the bit3 board. */

if (!setup (gNodeIO))

(
fprintf (stderr, "\nCould not initialize Bit 3 SBus Adaptor.\n");

exit (i);

)

return TRUE;

int setup (io_p)

struct bts_reg *io_p;
(

u char data;

if (io p->loc_status & NO_POWER)
{

bit3 check (io_p) ;
return FALSE;

)

data - io_p->rem_cmd;

io_p->loc_cmd - CLEAR ERR;
io p->rem_cmd- USE_PAGE;

io p->rem_page - 0;

return (blt3_check (io_p)) ;

}

int bit3 check (io_p)

struct bts reg *io p;

(

int data;

data - io p->ioc_status;

if (data & (ERROR_MASK I NO_POWER))

(

printf ("Status error 0x%2.2x:\n", data);

if (data & NO_POWER)

{

printf ("\tRemote chassis off or cable disconnected.ln");

}

else

(

if (data & ERR PARITY)

printf ("_Interface parity error.kn") ;

if (data & ERR BERR)

prlntf ("_Remote bus error.\n");

if (data & ERR TIMEOUT)

printf ("_Interface timeout. \n") ;

}

return (FALSE) ;

}

return (TRUE) ;

}

/. ** W/

char *map_bit3 ()
{
char *baseMemAddr - (char *) mmap ((char *)NULL, PAGE SIZE,

PROT_READ I PROT_WRITE, MAP_SHARED, gBit3fd, BT_RRAM)[

if (baseMemAddr _ (char *)-I)

{

fprintf (stderr, "Failed to mmap memory.\n");

exit (-i) ;

}

#ifde f VERBOSE

fprintf (stderr,"ktMemory mmap returned %xkn", (int)baseMemAddr);

#endl f

return (baseMemAddr) ;

}

#endif BIT3

/* **Ww*WWW*W*W*Www*e****WWWW*****WW**WW*WW**WWWW*Ww**WWWW */

/* */

/* IRAF interface commands */

/, */

/* These co_m_Ids are used by the IRAF interface */

/* program detlocal.c */
/. */

/* They are not used in Quickview. */

i. *I

/* created 1/22/92 pad */
i* *I

/W _***WiW.WWWW*w_W*W**WW_WWWWW***ieWWWWi***WWW_WWWiwi*WWW WI

void ATD iraf defaults();

void ATD--iraf-format();

void ATD-iraf-initialize();

void ATD iraf defaults ()

(

set_param
extension */

set_param
-I

set_param
*I

set_param
*I

set_param
-I

set param
*I

set param
read */

set param
*I

set param
*I

set_param
*I

set_param
*I

set_param
*I

set param
read */

set_param

postscan */

set_param
*I

set_param

fully */

set_param

fully */

set_param
*I

set_param

set_param
*I

set param
*I

set param (
-I

/* set_param (
backwards */

/* set_param (
backwards */

/* set_param (
backwards */

/* set_param (
backwards */

)

CCDSER, 2048) ;

BINSER, 1) ;

PRESER, 0) ;

UNDERSER, 0) ;

ORGSER, 0) ;

READSER, 2048);

POSTSER, 0) ;

OVERSER, 0) ;

CCDPAR, 2048) ;

BINPAR, 1) ;

ORGPAR, 0) ;

READPAR, 2048);

POSTPAR, 0);

OVERPAR, 0);

PARDELAY, 100);

ODELAY, 20);

CDELAY, 20);

EXPL, 200);

EXPH, 0);

NUMCLEARS, 1);

CISCFLAG, 0 ;

ANTIBLOOM, 0 ;

CAM0_SD IR, 0 ;

CAM0_PD IR, 0 ;

CAM1 SDIR, 0 ;

CAMI_PDIR, 0 ;

/* total length of serial register, including

/* serial binning factor

/* serial pre-prescan

/* serial underscan

/* serial read origin, should include extension

/* serial read dimension

/* serial postscan, pixels to discard after the

/* serial overscan, pixels to read after overscan

/* total length of parallel register

/* parallel binning factor

/* parallel read origin

/* parallel read dimension

/* parallel postscan, rows to discard after the

/* parallel overscan, rows to read after the

/* parallel clock delay time

/* 0DELAY is the delay for the shutter to open

/* CDELAY is the delay for the shutter to close

/* exposure time as a double word

/* the number of clears to perform when clearing

/* continuous clear flag

/* clock recombination anti-blooming flag

/* serial dir for CAM0 0 - forwards, 1 -

/* parallel dir for CAM0 0 - forwards, 1 -

/* serial dir for CAM1 0 - forwards, 1 -

/* parallel dir for CAM1 0 = forwards, 1 =

void ATD iraf format (ser_bin, ser_pre, ser_under, ser org, ser read, ser post,

ser_over,-par_bin, par_org, par_read)

long

long

long

(

ser bin, ser_pre, set_under, serorg;

set.read, ser_post, ser over;

par_bin, par_org, par_read;

set_param(BINSER,(unsignedshort
set_param(PRESER,(unsignedshort
set_param(UNDERSER,(unsignedshort
setparam (ORGSER, (unsigned short

set_param (READSER, (unsigned short

set param (POSTSER, (unsigned short

set_param (OVERSER, (unsigned short

set_param (BINPAR, (unsigned short

set param (ORGPAR, (unsigned short

set param (READPAR, (unsigned short

set_param (OVERPAR, 0) ;

ser bin);

ser pre);
ser under);

ser org);
set read);

ser_post);

ser over);

par_bin);

par org);

par_read);

void ATD iraf initialize ()

(

printf(stderr,"opening VMEbus device drivers...\n");

ATD \nit devices ();
#ifdef V]ERBOSE

fprintf (stderr,"performing restart of camera controller ...in");
#endif

reset ();

#ifdef VERBOSE

fprintf (stderr,"initlalizing camera ...in");
#endif

cam restart ();

#ifdef V]ERBOSE

fprintf (stderr,"setting all defaults ... in");
#endif

ATD iraf defaults () ;
set-format ();

}

static char *ATD_data_ptr;

void ATD \nit data_ptr()
(

ATD_data_ptr - (char *)ram_base;
}

char *ATD_get_dataptr()

{

return (ATD_data_ptr) ;
)

void ATD set data_ptr(ptr)

char *ptr;

(

ATD_data_ptr - ptr;
}

/* */

/* ATDcam.h */

1" */
I* Definitions for ATDcam.c *I

/* */
/* History: Rev 1.0 4/3/92 */

/* Extracted from cam.h for use in IRAF interface */

/. *!

/* Copyright (c) 1992 Advanced Technologies Division of Photometrlcs Ltd. */
/* */

/* functions */

void caminit ();

void reset ();

void halt ();

void cam restart ();

char io read ();

void io-write ();

void io_pulse ();

void set_param ();
void ciscon ();

void ciscoff ();

void gain_lo();

void gain_hi();
void offset();

void shade ();

void oshut ();

void cshut ();

void pix_bin() ;
void row bin();

void pix-_discard ();
void row discard();

void pix_read();

void row read();

void cam-write();

void clear();

void readout();

void bias ();

void xpose ();
void dark ();

void obs ();

void pass_short_param ();

void pass_char_param ();

void pass_s_char_param();

void q cam con_nand();

void cam command ();

void issue cow, hand ();

void check error();

void set_c_dy ();
void set msdf();

void wait cmd done ();

void wait smdf();

void get_mbs();

void fill mbs();

void get_mb0();

void tempO();

void templ();

void get_format();
void set format();

void anti bloom off();

void anti-bloom-on();

void integrate ccd();

void cam fast ([;

void cam-slow ();

void wait_empty ();

void wait OK();
void wait CR LF();

void set exposure time();

char get a char();

void send file();

void flush_buffer();

void read cam buffer();

/* The 68HCII controller command set. */

/* VME board commands */

#define CM_3 A_ INIT 0x0000 /* */

#define C_D SPCON INIT 0x0001 /* */

#define CS_9-SPCON-RESET 0x0002 /* */

#define CMD IORD 0x0003 /* */

#define CMD-IOWR 0x0004 /* */

#define CMD-IOPLS 0x0005 /* */

#define CMD HALT 0x0006 /* */

#define CMD-ERROR RESET 0x0007 /* */

#define C_D-FLUSH-BUFFER 0x0008 /* */

/* Camera commands */

#define CMD CAM RESTART 0x0020 /* */

#define CMD SET PARAM 0x0021 /* */

#define CMD CISCON 0x0022 /* */

#define CMD--CISCOFF 0x0023 /* */

#define CMD--GAIN HI 0x0024 /* */

#define CMD--GAIN--LO 0x0025 /* */

#define CMD-OFFSET 0x0026 /* */

#define CMD--SHADE 0x0027 /* */

#define CMD--OSHUT 0x0028 /* */

#define CMD--CSHUT 0x0029 /* */

#define CMD--PIX BIN 0x002A /* */

#define CMD ROW BIN 0x002B /* */

#define CMD PIX DISCARD 0x002C /* */

#define CMD ROW DISCARD 0x002D /* */

#define CMD PIX READ 0x002E /* */

#define CMD ROW READ 0x002F /* */

#define CMD CAM WRITE 0x0030 /* */

#define CMD CLEAR 0x0031 /* */

#define CMD-READ 0x0032 /* */

#define CMD-BIAS 0x0033 /* */

#define CMD-XPOSE 0x0034 /* */

#define CMD--DARK 0x0035 /* */

#define CMD--OBS 0x0036 /* */

#define CMD-SEND STRING 0x0037 /* */

#define CMD-TEMPO 0x0038 /* */

#define CMD--TEMPI 0x0039 /* */

#define CMD-FORMAT 0x003A /* */

#define CMD-SET FORMAT 0x003B /* */

#define CMD ANTI BLOOM OFF 0x003C /* */

#define CMD--ANTI--BLOOM--ON 0x003D /* */

#define CMD--INTEGRATE CCD 0x003E /* */

#define CMD-CAMFAST -- 0x003F /* */

#define C_ CAM SLOW 0x0040 /* */

#define CMD CAM ENABLE 0x0041

#define CMD CAM DISABLE 0x0042

#define C_D SET TEMP 0x0043

#define CMD FRAME TRANSFER 0x0044

#define CMD-FULL FRAME 0x0045

/* Constants */

#define CMD STOP 0x00FF /* */

#define CMD-RESET 0x00AA /* */

/* parameter offsets as far as the camera is concerned */

#define CCDSER 0 /* length of serial register, incl. extension */

#define BINSER 1 /* serial binning factor */

#define PRESER 2 /* serial prescan */

#define UNDERSER 3 /* serial underscan */

#define ORGSER 4 /* serial read origin */

#define READSER 5 /* serial read dimension */

#define POSTSER

#define OVERSER

#define CCDPAR

#define BINPAR

#define ORGPAR

#define READPAR

#define POSTPAR

#define OVERPAR

#define PARDELAY

6 /* serial postscan

7 /* serial overscan

8 /* length of parallel register

9 /* parallel binning factor

i0 /* parallel read origin

Ii /* parallel read dimension

12 /* parallel postscan

13 /* parallel overscan

14 /* parallel clock delay time

*/
*/

*/
*/
*/
*/

*/
*/
*/

/* parameter locations

#define ODELAY 20

#define CDELAY 21

#define EXPL 22

#define EXPH 23

#define NT/MCLEARS 24

#define NUMIMAGES 25

#define IM WAIT LO 26

#define IM-WAIT-HI 27

/* parameter locations

#define CISCFLAG

#define ANTIBLOOM

#define ARCH

#define SPEED

#define SLDELI

#define SLDEL2

#define CAMDAC DEFAULT

/* parameter locations 37 through

15 through 19 unused for now

/* shutter open delay [m]

/* shutter close delay [ms]

/* exposure time

/* number of clears to execute

/* number of images to acquire

/* delay between image acquisitions

*/

*/

*/

*/

*/

*/
*/

28 through 29 unused for now

30 /*

31 /*

32 /*

33 /*

34 /*

35 /*

36 /*

39 unused for now

*/

continuous clear flag */

clock recombination anti-blooming flag */

ccd architecture

0 = full frame, 1 - frame transfer */

camera readout speed 0 - slow, 1 - fast */

slow readout delay 1

from shift to summing well */

slow readout delay 2

from sunTning well to adc start pulse */

default value for offset dac */

*/

#define GSPFLAG 40

#define GSP CAP WIN 41

#define GSP CAP X 42

#define GSP CAP Y 43

#define GSP DIS WIN 44

/* graphics system processor flag */

/* gsp capture window */

/* gsp capture window x location */

/* gsp capture window y location */

/* gsp display window */

/* parameter locations 45 through 49 unused for now

/* the following parameters are used to set the shift directions on a AIS or

AIS2 camera system. 0 = forwards, 1 = backwards. */

#define CAM0 SDIR 50 /* serial direction for CAM0 */

#define CAM0-PDIR 51 /* parallel direction for CAM0 */

#define CAMI-SDIR 52 /* serial direction for CAM1 */

#define CAMI--PDIR 53 /* parallel direction for CAM1 */

*/

/* Offsets into the PTVSI mailbox registers */

#define MB0 1

#define MBI 3

#define MB2 5

#define MB3 7

#define MB4 9

#define MB5 ii

#define MB6 13

#define MB7 15

#define MB8 17

#define MB9 19

#define MBI0 21

#define MBII 23

#define MBI2 25

#define MBI3 27

#define MBI4 29

#define MBI5 31

/* Offset to the PTVSI reaset location */

#define RESET 0x3D;

/* Bit masks used for interpreting the status mailbox (mailbox 0) */

#define CRDY 0x01

#define MSDF 0x02

#define BSY 0x04

/* Bit masks for interpreting mailbox 6 */
#define S_gR 0x01

Appendix E: UNIX Utility Source Code

/* AISsay - a simple program used to send any old text string to the AIS cameras

through the serial port on the VME interface. May also be used with

ATC5 or ATC6 cameras. */

#include <stdio.h>

main (argc, argv)

int argc;
char *argv [];

{
if(argc [= 2)

{
fprintf(stderr,"\nUsage: AISsay string\n");

exit();

}

ATD_init_devices();

send_string(argv[l]);

wait_OK();

wait CR LF();

}

/* AISsend - a simple program used to send any old text file to the AIS cameras

through the serial port on the V ME interface. May also be used with
ATC5 or ATC6 cameras. */

#include <stdio.h>

main (argc,argv)

int argc;

char *argv[];

(
if(argc != 2)

{
fprintf(stderr,"\nUsage: AISsend filename\n");

exit();

}

ATD_init_devices();

send_file(argv[l]);

/* AISsetup - used to initialize some of the more advanced

fetures of the AIS camera system, including the

programmable clock voltages and the progranmnable timing

states. Meant for use by the system maintenance person

more than for the casual user.

*/

#include <stdio.h>

void askdefault();

main ()

{
unsigned int selection;

int done=0;

ATD_init_devices();

while(!done)

{
printf

printf

printf

printf

printf

printf

printf

printf

printf

"\n\n");

" AIS setup procedure \nkn");

" Please select one of the following operationsknkn");

" 0. reset and initialize camerain");

" i. initialize clock voltageskn");

" 2. initialize timing informationkn");

" 3. initialize parameters\n");

" 4. exit this program\n");

"\n\nplease enter your selection...");

scanf("%u",&selection);

if((selection < 0) II (selection > 4))

printf("ERROR: invalid selection.\n");

if(selection := 0)

{
reset () ;

cam_restart () ;

}

/* reset the VMEbus interface */

/* re-initialize the camera */

if(selection == i)

{
send_file("AISvolts");

ask_default();

}

if(selection == 2)

{
send_file("AIStiming");

ask_default();

}

if (selection == 3)

printf("\nSorry ... function not yet supported.\n");

if (selection =: 4)

done : 1;

}
exit(0) ;

